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Abstract

Modern optimal control theory provides analytic solutions for a set of lin-
ear feedback design problems with linear quadratic performance criteria. Recent
progress in the field of robust multivariable feedback design has incorporated addi-
tional constraints which have addressed the classical concerns with stability margins,
system sensitivity and disturbance rejection. Despite these important advances,
many practical design problems arise in which the desired system performance con-
straints cannot be accommodated by the available theoretic techniques.

Genetic algorithms ( GA’s ), on the other hand, offer a numerical search
method which does not require a statement of the mathematical relationship be-
tween the performance criteria and the p#rameter update rule. The objective of this
thesis is to demonstrate that GA’s provide a method of optimizing control system
problems with analytically intractable constraints.

A linear missile airframe and actuator state space model is developed with
linear feedback controller, and implemented in a discrete time simulation. A genetic
zﬂgorithm is constructed to optimize the linear controller parameters, first with
respect to a weighted linear quadratic performace index. Additional performance
constraints are then imposed to meet rise time, peak actuator effort, and settling
error specifications. Computer simulation results show that the genetic algorithm

provides good convergence to near optimal controller designs for each successive

combination of constraints.
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Abstract

Modern optimal control theory provides analytic solutions for a set of lin-
ear feedback design problems with linear quadratic performance criteria. Recent
progress in the field of robust multivariable feedback design has incorporated addi-
tional constraints which have addressed the classical concerns with stability margins,
system sensitivity and disturbance rejection. Despite these important advances,
many practical design problems arise in which the desired system performance con-
straints cannot be accommodated by the available theoretic techniques.

Genetic algorithms ( GA’s ), on the other hand, offer a numerical search
method which does not require a statement of the mathematical relationship be-
tween the performance criteria and the parameter update rule. The objective of this
thesis is to demonstrate that GA’s provide a method of optimizing control system
problems with analytically intractable constraints.

A linear missile airframe and actuator state space model is developed with
linear feedback controller, and implemented in a discrete time simulation. A genetic
algorithm is constructed to optimize the linear controller parameters, first with
respect to a weighted linear quadratic performace index. Additional performance
constraints are then imposed to meet rise time, peak actuator effort, and settling
error specifications. Computer simulation results show that the genetic algorithm
provides good convergence to near optimal controller designs for each successive

combination of constraints.
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CHAPTER 1

INTRODUCTION

Classical autopilot design methods rely on frequency domain techniques to achieve
gain and phase margin criteria, while providing desired characteristics of the closed
loop system response such as minimum rise time and maximum overshoot.

Autopilot design methods based on modern state space concepts have been
developed which allow the designer to shape the dynamic response of the closed
loop system by placing the poles of the compensated system, provided issues of
controllability and observabibility have been adaquately addressed. Determining
where to place the poles, however, is somewhat more subjective.

Recent progress in the field of robust multivariable feedback design theory
has employed singular value decomposition as a measure of system performance
and robustness. Singular value loop shaping has then been accomplished via H, ,
frequency weighted LQG, and LQG loop transfer recovery design techniques [11,4].

All of these important advances, however, have placed constraints on the
ways in which system performance and robustness characteristics must be specified.
Most control system engineers will be faced with many design problems in which the
given specifications cannot readily be formulated in terms required by the available
theoretic design criteria. In particular, many long accepted norms of classical system

performance criteria, such as rise time and maximum overshoot, may result in




problem formulations which do not have analytic solutions.

Genetic algorithms (GA’s), on the other hand, offer a numerical search
method which mathematically mimics some of the aspects of biological natural
selection in order to achieve adaptation to a specific measure of fitness. An impor-
tant advantage of genetic algorithms is that they do not require a mathematical
statement of the relationship between the performance criteria and the parameter
update rule. Instead they rely on reproductive characteristics of a sample gene pool
which is bred to maximize the desired fitness measure. Furrthermore, genetic algo-
rithms are good at finding global as opposed to local optimums. These properties
make GA’s an excellent candidate for numerically optimizing a multicriterion design .
specification problem which' incorporates an arbitrary but feasible combination of
performance and constraint criteria.

The objective of this thesis is to demonstrate that a genetic algorithm pro-
vides a method for optimizing an autopilot control system with respect to a set of

design specifications which are feasible but have an analytically intractable solution.

1.1 The Control System Optimization Problem

The controller design problem begins with a model of the system to be controlled,
referred to as the plant , and a set of design goals, or spectfications . The plant in
this instance will be regarded as the physical system (i.e. missile airframe) along
with its control surface actuators and feedback sensors. The design specifications
must incorporate criteria related to the performance, stability, and robustness of
the resulting controlled system.

In the general case, the form of the controller, as Well as the form of the

design specifications, may all be open for selection by the designer. In fact, in



the most general case, decisions regarding the design of the plant, the number and
fidelity of feedback sensors, the size and location of control surfaces, the bandwidth
of actuators, and the like, may also be determined or influenced by the control
systems engineer. At some stage in the design process, however, the other factors
become fixed, and the controller design problem becomes a search for a suitable
controller that will satisfy the stated design specifications.

In optimal control theory, the goal of finding the best controller is introduced.
To this goal, the design specifications are formulated in mathematical terms as
a performance measure plus auxillary constraints. The objective of the optimal
control problem is to determine the controller that will minimize (or maximize) the
performance measure, and at the same time satisfy the auxillary constraints [9).

In practice, most optimal control procedures fix the form of the controller
and codify the form of the performance measure in-order to develop analytical solu-
tions. Most optimal controls work is based on Linear Time Invariant Causal (LTIC)
Systems with linear state feedback controllers. The best known of these methods
employs the weighted mean-square error of the regulation variables and control
effort to form a quadratic performance index. This usually results in the Linear
Quadratic Regulator (LQR) problem when full state feedback is available, or the
Linear Quadratic Gaussian (LQG) problem when state estimation is required. The
LQR design, while extremely robust from a theoretical standpoint, is often imprac-
tical to implement, and the LQG design results in a controller that is notoriously
non-robust.

In their book Linear Controller Design, Limits of Performance , Boyd
and Barratt [2] develop an analytical framework for determining the most stringent
set of controller design specifications, within a specific class, that can be met using

any controller design method for a given plant and feedback control configura-



tion. This results in the so-called Pareto optimal specification , and the resulting
controller is the Pareto optimal design . After classifying many types of design
specifications, Boyd and Barratt present a numerical method for solving controller
design problems with closed-loop convex nondifferentiable design specifications that
do not have analytic solutions. While this is an impressive and inspiring body of
work, such Pareto optimal designs usually result in controllers of inordinatly high
order (say 100 or more) for even relatively simple systems !

For the purpose of this thesis, the control system optimization problem will be
limited to a fixed form of controller: linear state feedback control; and a given Linear
Time Invariant Causal (LTIC) plant. A performace measure and several auxillary
constraints will be successively incorporated into a single fitness measure that can
be maximized by a genetic algorithm. It will be demonstrated that the genetic
algorithm can be successfully applied to the resulting multicriterion optimization

problems for which analytic solutions do not exist.

1.2 Common Measures of Performance

Control system design speciﬁcat(;ns must incorporate criteria related to the per-
formance, stability, and robustness of the resulting controlled system. In classical
controls design methods, performance specifications describe how the closed loop
system should respond to commanded inputs and how well it should reject un-
commanded disturbances. Some examples of classical performance specifications
include: lrise time, percent overshoot, and settling time [14].

Robustness specifications are intended to limit the variations in performance
of the closed loop system due to variations in the plant during operation, or due

to errors and simplifications in the plant model used for design. In classical de-




sign methods, robustness specifications usually take the form of allowable gain and
phase margins. Closed loop system stability is usually understood to be a hard
constraint that is contained within the performance specifications and guaranteed
by the robustness specifications.

Modern optimal control theory provides an analytical solution to the Linear
Quadratic Regulator (LQR) problem by minimizing a quadratic performance indezx

of the form :

7= " () Qx(t) + u'(t)Ru(e)] dt (1)
where :

x(t) is the state variable vector,

(t) is the control variable vector,
Q is a positive semi-definite weighting matrix
R is a positive definite weighting matrix

T is the finite final time

For the dynamic process characterized by :
x(t) = Ax(t) + Bu(t) (1.2)

solution of the Algebraic Riccati Equation (ARE) will provide a steady state linear

control law of the form :
u(t) = —kx(t) (1.3)

where k is the steady state gain matrix that minimizes the quadratic performance
index J. This basic perfomance index can be modified to incorporate numerous

variations such as:

1. final value of state vector at time T




2. time varying Q matrix
3. time varying R matrix
4. non-zero initial time

5. infinite final time (T' = oo)

1.3 Standard Optimization Techniques

The solution of the control system optimization problem depends to a large extent
upon certain properties of the design specification. In a few cases closed form
analytical solutions may exist, but usually a form of numerical search technique is
required. Many forms of search techniques have been documented, but most fall
into one of three broad categories: calculus-based, enumerative, or random (7).

If the design specification is differentiable , then several standard analytical
as well as calculus-based search techniques may apply. If the design specification
is not differentiable, but is closed-loop convez [2, chapter 6] then numerical search
methods such as the Nelder-Meade algorithm [12], the cutting plane algorithm
(2], or the ellipsoid algorithm [2] may be required. If the design specification is
non-differentiable and non-convex, then the more time consuming enumerative or
random search techniques may be the only hope.

The quadratic performance index shown in equation 1.1 is a differentiable
specification, and the Linear Quadratic Regulator problem has been analytically
solved in its many forms by application of the Hamilton-Jacobi equation as devel-
oped in either [1, chapter 2] or [9, chapter 5, section 2]. The solution of the resulting

two-point boundary value problem results in an optimal control of the form:

u'(t) = —k(t)x(t) = —R7(t)B'(t)P(t)x(t) (1.4)



where P(t) is the solution to the familiar Riccati equation:
P(t) = -P(t)A(t) — A'(t)P(t) — Q(t) + P@)B(t)R™'(t)B'(t)P () (1.5)

The optimal LQR control is thus time varying, and the Riccati equation
can be solved analytically for simple systems, or numerically for more complicated
systems by integrating backward from the final time T. Methods of solving the
Riccati equation are presented in many standard texts, see [9,1,5,6,3] for details.

The steady state solution of equation 1.5 can be determined by setting the

derivative to zero and solving the resulting Algebraic Riccati Equation (ARE):
0=-PA-A'P-Q+PBR'BP (1.6)

It has been shown that if the system is asymptotically stable and is both control-
lable and observable, then the ARE has a unique positive definite solution P, which
minimizes the performance index J, when used in the optimum control law of equa-
tion 1.4. This approach is often used to generate a non-time varying control law
that produces near optimal results.

The LQR design, while extremely robust from a theoritical standpoint, re-
quires full state feedback which is often impractical in the implementation or actual
systems. Optimal state estimation, the dual problem to the optimal control formu-
lation, usually results in the implementation of a Kalman filter to provide estimates
of missing or noisy states in the feedback path. This configuration is known as
leading to the Linear Quadratic Gaussian (LQG) controller. In practice however,
the LQG design results in a controller that is notoriously non-robust.

The Nelder-Meade algorithm, is a numerical search technique that does not
require analytical differentiation [12]. It is effective and computationally compact,
however, it is not guaranteed to find global optimumé. Instead, it must be initial-

ized with an initial guess, and tends to find the local minimum of a function, in the



vicinity of the initial guess. The Nelder-Meade algorithm is formulated in terms of
a simplezx, which is a generalized triangle of N dimensions. For functions of two vari-
ables, the simplex is just a triangle. The algorithm works by evaluating the function
to be optimized at the three vertices of the triangle, ranking the vertices from best
to worst. The worst vertex is rejected, and a method is provided for computing
a new vertex so that a sequence of triangles is formed that will converge on the
minimum of the function. The simplex concept easily extends the mechanization of
the algorithm to include functions of N variables.

Modern control theory optimization techniques, are limited in the ways in
which system performance and robustness characteristics must be specified. Most
control system engineers will be faced with many design problems in which the
given specifications cannot readily be formulated in terms required by the avail-
able theoretic design criteria. In particular, many long accepted norms of classical
system performance criteria, such as maximum overshoot or settling time, may re-
sult in relatidnships which do not have analytic solutions. In many other situations,
desirable performance or robustness criteria may result in relationships between con-
troller parameters and the performance index which are either non-differentiable or
non-convex. Either situation makes solution by standard numerical methods diffi-
cult. In particular, numerical search algorithms tend to get stuck on local maxima

or minima, while enumerative or random search techniques take too long.

1.4 An Introduction to Genetic Algorithms

Genetic algorithms are a numerical search method which mathematically mimics
some of the aspects of biological natural selection in order to achieve adaptation to a

specific measure of fitness. Genetic algorithms, or GA’s, first appeared in the early



1970’s and were largly developed by John Holland, his colleagues and students at the
University of Michigan [7]. Being non-calculas based, GA’s do not require derivative
information about the design specification. Instead they use a biological approach
to randomly mating individual genetically coded characteristics, with preference
weighted toward those which produce individuals displaying the greatest fitness .
While employing random choice as a tool in the process, genetic algorithms are
not purely random search techniques, but rather exploit the surprisingly powerful
optimization tendency of population group evolution. Of particular importance is
the fact that genetic algorithms work well in finding global optimums and are much
less likely to converge on local maxima or minima in the manner of many numerical
search methods.

Genetic algorithms may be constructed of varying degrees of complexity, but
an effective form can be fairly easy to imjplement. First, a fitness function to be
maximized by the algorithm must be determined for the problem at hand. In the
case of an LQR control system, for example, this fitness function could be related
to the quadratic performance index. In this case the fitness function must express
an inverse relationship to the quadratic performance index, since the LQR solution
works to minimize this index, while the genetic algorithm, for technical reasons that
will become apparent, works to maximize the fitness function.

Once the fitness function is determined, the variable parameters, such as
the control system feedback gains, are coded into bit strings consisting of ones and
zeros. An initial population of random strings is generated, and the system fitness
function is evaluated for each individual in the population. Successive generations
are then generated by the operations of: Reproduction , Crossover and Mutation ,
which are explained in greater detail in Chapter 3.

The processes of reproduction, crossover and mutation are repeated until an
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entirely new population has been generated. The old generation is discarded, and
the fitness of each individual in the new generation is determined. The sum of the
fitness values is calculated for the new generation, and reproduction, crosSover and
mutation are ready to begin again. Statistics are maintained to monitor such things
as the minimum, maximum, and average fitness values for each generation. The
process is halted when an appropriate convergence criteria, such as the average
fitness value for a generation, reaches a specified level.

While the mechanics of genetics algorithms are fairly easy to understand, the
underlying reasons for their success are more subtle. This phenomenon is explained
by the concept of schemata templates and the building block hypothesis. Binary
schemata templates are those in which some bit positions are important, while
other bit positions are unimportant, or don’t care bits. For example the schemata
template 10*1**0, may be thought of as having 4 important bits, with 3 intervening
don’t care bits. For this schemata, the actual bit strings 1001000, 1011100, and
1001010 would all have an equivalent value, while the bit string 1010110 would have
an inferior value.

It is postulated that useful schemata, which result in higher fitness values,
concentrate in short building blocks. These building blocks are then sampled and
recombined by the operations of reproduction and crossover at a much higher fre-
quency than those of inferior combinations. The mutation operation assists by in-
troducing new information at a rate that will not disrupt the building block process.
Goldberg works through some examples to illustrate this process in reference [7],

and in reference [8, page 1570] he asserts that:

Holland’s schema theorem places the theory of genetic algorithms on
rigorous footing by calculating a bound on the growth of useful simi-

larities or building blocks . Moreover, it has been recently conjectured,
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that global convergence of certain types of GA is probabilistically poly-
nomial. If shown correct, this conjecture could revolutionize the global

solution of almost any problem.

1.5 Optimization via Genetic Algorithm - An

Example

A simple optimization problem with one independent parameter will now be used
to demonstrate the genetic algorithm explained in the previous section. Assuming
that the value of the fitness function is represented exactly by the following equation

in the parameter x :
fitness = 10.0 — (z — 2.5)* + 5 sin(4nz) (1.7)

which is plotted in figure 1.1.

While simple in construction, the closely spaced relative maxima and min-
ima in this example present a non-trivial optimization problem for most search
techniques. Using MATLAB to solve this function numerically for the three highest

peaks yields the following:

x value  peak fitness

2.1245 14.8589
2.6243 14.9844
3.1242 14.6101

Thus for this example, the maximum fitness occurs at the center peak with a value
of 14.9844, and the optimum value of x is 2.6243.
Using a population size of 20, and a 16 bit string to represent values of x

ranging from 0.0 to 5.0, nine generations of the genetic algorithm were performed
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Fitness Function
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Figure 1.1: Fitness Function for Genetic Algorithm Example

using the MATLAB program GATEST, which is described in the Appendix. Fig-
ure 1.2 shows the initial population of random values for generation number 1. The
four plots in this figure are generated for each generation and show the fitness and
parameter values for each individual in the left hand plots, as well as maximum
fitness and average fitness statistics for each generation in the right hand plots. For
the initial generation, there is no statistical data available for the right hand plots.

Figure 1.3 shows the results after five generations of reproduction, crossover
and mutation, which produces an optimum value for x of 2.6397, correct to within
.58%. Figure 1.4 then shows the results after nine generations, which produces an
optimum value for x of 2.6276, correct to within .12%. Figures 1.5 and 1.6 show
in greater detail the history of the maximum fitness value and best, or optimum

parameter with increasing generation.

Note that five generations represent only 100 trial parameters, and nine
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Figure 1.2: Initial Generation for Genetic Algorithm Example

generations represent only 180 trials. For comparison, a purely random search

would require something on the order of 5000 trials to achieve an accuracy of .1%

over the same range, and most gradient search techniques would have extreme

difficulty optimizing this function.
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CHAPTER 2

APPLICATION SYSTEM MODEL

A general feedback control scheme for a pitch plane missile autopilot controller is

shown in figure 2.1. The sensors provide feedback variables to the controller which

may be some combination of state and response variables. Regarding the pitch

plane missile dynamics, most actual missile autopilot controllers accept normal

acceleration commands (7.) from the guidance loop, and utilize accelerometer (1,)

and rate gyro (0,) feedback information to determine the actuator command (6,).

The actual airframe and actuator and even sensor dynamics may be highly

non-linear over the flight regime of any missile. However, over small ranges of flight

conditions, where parameters such as Mach number, dynamic pressure, fuel weight,

thrust, etc., may be considered constant, linearized models can be developed for

—— Controller

Ms

A

4

0,

Actuator

y

Sensors

(response)

Airframe

(states)

Figure 2.1: Missile Autopilot Feedback Control Scheme
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use in the control system synthesis. These models can produce controllers that
are effective within some range of the assumed flight conditions. Usually several
conditions are studied, and the resulting controller parmeters are then scheduled
over the desired flight envelope.

The approach used in this thesis will be to develop a linearized airframe and
actuator model and assume hypothetical values that correspond to a single flight

condition. A state space model of this system will be developed, with the states

being:
z; = a = angle of attack
z, =0 = pitch angular rate
z3 =6 = actuator deflection

Full state feedback will be assumed, with angle of attack («) used in place
of normal acceleration (n) as the autopilot tracking variable. This is done for
simplification in the development of the system model, but in no way compromises
the applicability of the results, since it will be seen that in the linear model n is
just a linear combination of a and é. For simplicity also, the sensor dynamics will
be ignored, and the sensor transfer functions will assumed to be unity so that the
feedback states are the actual modelled states.

The following sections develop the equations for the linearized airframe and
actuator models and provide the hypothetical flight dependent parameters used in
the ensuing analysis. A state space system model is then developed, along with
the discrete time model required for digital simulation. Finally, the measures of
performance that will be used in the optimization studies are developed as applied

to this model.
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2.1 Linearized Missile Airframe Dynamics

The 6 degree-of-freedom linearized aerodynamics model for a missile (or aircraft)

rigid body are developed in section 2.6 of reference [5|. We will extract the pitch

plane equations from this development, with some further simplifications and changes

in nomenclature. First we define the pitch plane dynamic variables:

o - angle of attack

6 - pitch angle

~ - flight path angle

V - velocity vector

17 - body normal acceleration
6 - actuator deflection angle

X - body centerline axis

N

- body normal axis
as shown in figure 2.2.

Beginning with the three axes force and moment equations, reference [5]
proceeds to the linearized equations for small perturbations about an operating
condition by assuming constant velocity and attitude. Control surfaces and engine
thrust are also assumed to be trimmed to these conditions. Longitudinal and lateral
dynamics, which are normally only lightly coupled, are assumed uncoupled so that
control system design can proceed independently in each channel. The resulting
three equations for the longitudinal (pitch) axis are repeated below, but with a
small change in nomenclature to use A for the axial force (instead of X}, N for the
normal force (instead of Z), 0 for the pitch angular rate (instead of q), and 6 for

the elevator (or actuator) deflection angle (instead of 6g) (5, page 45]:

6% = AyAu + Ago — g0 + Agb (2.1)
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Figure 2.2: Missile Pitch Plane Dynamic Variables
6= (Ny/V)Au+ (Nu/V)a+ 0+ (Ng/V)é (2.2)
§ = M,Au + My + M6 + Mg (2.3)

where the variables are defined as follows:

A is the total force vector acting along
the body x axis (axial force)

N  is the total force vector acting along
the body z axis (normal force)

M  is the total body pitching moment

Au is the change in the velocity vector (V)

g is the pitch angular rate

6 is the actuator deflection angle
Note that in these equations, partial derivatives of the force and moment
terms are used. In aerodynamics, these forces and moments are usually expressed

in terms of the dimensionless aerodynamic coefficients, Cy, C4, Cp, in the following
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manner:
N =QS,Cx (2.4)
A=QS,Ca (2.5)
M = Q85,dC,, (2.6)
where:

Q is the dynamic pressure (force/area)

S, is a reference area that is airframe dependent

d is a reference length that is airframe dependent

The dynamic pressure, Q, is a function of air density and missile velocity

(@ =1/2pV?) , and the aerodynamic coefficients are airframe dependent, and may
.also be functions of parameters such as angle of attack, Mach number, actuator
deflection, and pitch rate. Thus the small perturbation derivative approach greatly
simplifies an otherwise highly non-linear problem. Defining the following partial

derivatives of the aerodynamic coefficients [15, page 66]:

Cna = 0Cy [da (2.7)
Cns = OCn 36  (28)
Cma = 0C,, [0 (2.9)

Cons = 0Cy |36 (2.10)
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C,; = 0Cn/00 (2.11)

Finally the force and moment derivatives used in the linearized longitudinal

equations can be defined as:

N, = (QS:/mV)(Cno — Ca) (2.12)
N5 = (QS,/mV)Chs | (2.13)
M, = (Q5Sd/IL,)Crna (2.14)
Ms = (QS-d/1,)Crs (2.15)

M; = (QS,d)/(2LV)C,,; (2.16)

For this thesis, we are primarily concerned with the angular rate equations,

and will make the additional simplifying assumptions:
1. velocity is constant (Au = 0)
2. gravity can be ignored (g = 0)

3. aerodynamic damping is negligible (C,,; ~ 0)

Applying these assumptions, and manipulating V, yields the following simplified

linear angular rate equations:

& = Nya + 0+ N;6 (2.17)
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Figure 2.3: Linearized Airframe Model Block Diagram

6 = ¢ = Myo+ M0 + Msé (2.18)

As stated previously, angle of attack will be used as the control system
tracking variable in this thesis. It should be noted that for applications where the
normal acceleration response () is required, a good approximation is obtained by
assuming:

n=V4=V(N,a+ N;b) (2.19)

Equations 2.17 , 2.18 and 2.19 will become the linearized airframe model for this
thesis, and are represented in block diagram form in figure 2.3

Values for the linearized aerodynamic constant terms are assumed for pur-
poses of analysis in this thesis that represent a fictitious but unstable airframe at

some hypothetical flight condition as follows:

Assumed Flight Condition Constants
M, =64.11 N, = .1803

M; = —62.34 N; = .0738

M;=0 V =892 m/sec
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\ A

Figure 2.4: Linear Actuator Model Block Diagram.

2.2 Linear Actuator Model

A simple actuator with linear response characteristics can be modelled by the fol-

lowing differential equation:
6=(1/7)(6.—6) (2.20)
where:
6. is the commanded actuator angular deflection
6 is the actuator response
7 is the actuator time constant

This linear actuator model is also represented in block diagram form as shown in

figure 2.4

For purposes of analysis in this thesis, the following actuator time constant

will be used:

7 = .02seconds (2.21)

2.3 State Space System Model

Combining the linearized airframe and linear actuator models, the state space sys-

tem model is developed by making the following state variable assignments:
Ty = a = angle of attack
zy =0 = pitch angular rate

3 =6 = actuator angular deflection
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Using the results of the previous two sections, and making the appropriate

state variable substitutions, the combined state equations are:

27‘1 = Naxl + x4 + N(,‘xs (2.22)
22'2 = Ma.'Dl + M,s.’l?s (223)
z3 = —(1/7)zs + (1/7)6, (2.24)

and the output equation for 7 is:

y=VNyz1+VNsb (2.25)

This set of linear differential equations can be written in the familiar matrix
notation as:

X = Ax + Bu (2.26)

y=Cx+Du - (2.27)
where:

is the 3 x 1 state vector

»

is the 1 x 1 control variable (a scaler in this case)
is the 3 x 3 system matrix
is the 3 x 1 control matrix

is the 1 x 3 state output connection matrix

o aw » F

is the 1 x 1 control output connection matrix
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In terms of the previously defined variables, these matrices for the state space

system model are:
N, 10 N;

A=|M, 00 M; (2.28)
00 0.0 —(1/7)

0.0
B=| 00 (2.29)

1/7
C=|VN, 00 VN; (2.30)
D = [0.0] (2.31)

2.4 Linear Feedback Controller

The linear feedback controller provides one or more control variables that are formed

as a linear combination of the system states, as expressed in the following equation:
U= —(k1z1 + kzzz + k3$3) (232)

or written in matrix form as:

u=-kx (2.33)

The gain vector k consists of the three feedback gains that are to be determined

by the control system design or optimization process.
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Figure 2.5: Closed Loop Linear Control System

This notation is extended to tracking systems by including the non-zero input

command vector, r, as follows:

u=k(r — x) (2.34)

where:

r is the 3 x 1 input state command vector
x is the 3 x 1 state vector
u s the 1x 1 control variable (a scaler in this case)
k is the 1 x 3 gain vector |
The resulting closed loop system, when the linear feedback controller is applied to

the linear system model, is shown in the block diagram of figure 2.5

For the closed loop linear control system of figure 2.5 the state and output

equations can be expressed as:

X = Acx + Ber (2.35)

Y = Cex + Der (2.36)

where the closed loop system matrices are defined in terms of the open loop system
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matrices and feedback gains by the following equations:

A.=A - Bk (2.37)
B, = Bk (2.38)
Ce=C (2.39)
D.=D (2.40)

2.5 Discrete Time Simulation Model

Equations 2.35 through 2.40 establish the closed loop system equations in éontin-
uous form. For purposes of digital simulation and evaluation, however, we wish
to determine the corresponding system equations in discrete form. That is, given
the closed loop continuous system matrices, and a simulation time interval (dr), we

wish to determine the corresponding discrete matrices for the following equations:

x(k +1) = Agx(k) + Bar(k) (2.41)

y(k) = Cax(k) + Dar(k) (2.42)

where x(k) , r(k) and y(k) represent the state, input, and output variables at the kt*
iteration, and x(k+ 1) represents the state variables at the (k+1)** iteration. There
are many ways to convert from the continuous to the discrete system equation, but

a standard method recommended in several of the references [14,6,10], and used in
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this thesis involves the state transition matriz ®. A complete derivation is given in

[14, section 12.9], with the following results:

Ag = 9(dr)

— EAcdr

I+ Acdr + A2dr? /2! + ... | (2.43)

By = [fod ®(dr — t)dt] B,

= [Idr + Acdr®/2! + Ac2dr®/3! + .. B, (2.44)
Ca = C, (2.45)
D4y =D, (2.46)

The equations 2.41 through 2.46 represent the discrete time simulation model for-
mulation for tracking systems as used in this thesis. Initial values for all states are

assumed to be zero.

2.6 Measures of Pérformance

The specific measures of performance that will be used in forming the objective of

the optimization problem in this thesis are:
1. quadratic performance index

2. rise time specification
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3. peak actuator effort specification
4. settling error specification

Each of these measures is generated from the time response of the discrete time
simulation model to a unit step input in angle of attack. These measures of pér—
formance are used, either individually or in weighted combinations, to create a
single cost function that can be related to a fitness function for use in the genetic
algorithm.

The quadratic performance index used is the same as that of the Linear
Quadratic Regulator problem, which was given previously in continuous form in
equaton 1.1. For the discrete time simulation model, this performance index is

computed from the system discrete time response by the following equations:

j(k) = [x(k) —x(k)]' Q [r(k) — x(k)] + u'(k)Ru(k) (2.47)
J = ﬁ’: Sdr[j(k) +j(k —1)] (2.48)
where:
k is the discrete iteration counter (time)

x(k) is the state variable vector,
r(k) is the input (tracking) variable vector,

u(k) is the control variable vector,

Q is a positive semi-definite weighting matrix
R is a positive definite weighting matrix
N is the number of discrete iterations

(corresponding to the final time)
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Values used for the state and controls weighting matrices are:

100 0 O

Q=0 o010 (2.49)
0 0 o001
R = [0.01] (2.50)

For the unit step input, the tracking variable is just the constant command:
r'(k) = [ 1.0 0 0 ] (2.51)

fork =1... N.

Rise time specifications vary in different applications and are often defined
differently in various texts. The most widely accepted definition of rise time is the
time it takes for a signal to go from 10% to 90% of its final value [14, page 124].
This definition is somewhat cumbersome to compute, however, so for purposes of
this thesis the rise time, indicated by t,,., will represent the time for the system
angle of attack response (z;) to reach 80% of its commanded final value.

The peak actuator effort specification is simply a measure of the peak value
of the actuator response (zs) to the unit step input in angle of attack, as indicated

by the following expression:

Omaz = maz { |z3| } (2.52)

The settling error specification is a measure of the absolute value of the
difference between the angle of attack and its commanded value at the finite final

time (T = Ndr). That is:

Esettte = |T1(N) — z1(N)| (2.53)
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CHAPTER 3

GENETIC ALGORITHM
IMPLEMENTATION

The basic form of the genetic algorithm used in this thesis has been described
previously in section 1.4. This chapter will now describe the specific implementation
details of the genetic algorithm as applied to the control system optimimization

problem of this thesis.

3.1 Fitness Function

The discrete quadratic performance index (J) given previously in equation 2.48
forms the basis for constructing a fitness function. As seen previously, the genetic
algorithm acts to maximize the fitness function, while in fact we wish to mini-
mize the quadratic performance index (J). We can accommodate these conflicting

requirements by constructing a fitness function of the form:
fitness = €%/¢ — 1 (3.1)
where C is a cost term which is limited by:

0.5 < C < 100 (3.2)
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Figure 3.1: Genetic Algorithm Fitness Function vs Cost

The resulting function is plotted in figure 3.1.

The factor of 2 in the numerator of the exponential is somewhat arbitrary
and can be adjusted to give the fitness function a good gradient in the region of
interest for a specific problem. The value of 2 was determined after a few trials and
was found to work well for the optimization problem of this thesis. The constant
value 1 is subtracted from the exponential to shift the function to the origin for
large cost terms (C = 00), but does not really affect the optimization process.

For a simple quadratic performance specification, with no other constraints,
the genetic algorithm fitness function is formed by setting the cost term in equation

3.1 equal to the quadratic performance index:

C=J (3.3)
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3.2 Performance Penalties

Additional design specification constraints can be incorporated into the genetic algo-
rithm optimization problem by adding appropriately weighted performance penal-

ties to the cost term C as shown in the following equation:

C:J+P6+Psettlc+Prise (34)

where:

Ps is an actuator peak response penalty
Psettie  is a settling error penalty

Prise s a rise time penalty

These performance penalties and their associated weighting factors are given

by the following expressions:

10.0 (tn'se - ¢riae) if triac > ¢rise

Prise = (3.5)

0.0 otherwise
20.0 (5ma.z - ¢6) if 6maz > ¢6 (3 6)

5 = .
0.0 otherwise

P,ettle _ 10.0 (Esettle - ¢settle) if €0t > ¢scttlc (37)

0.0 otherwise

where:
s is the design actuator peak response specification

&rise is the design rise time specification

¢serte  is the allowable settling error specification
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3.3 Repro duction

Reproduction is the process of selecting two individuals from the current population
for mating. Individuals are selected using a random function that gives preferential
weighting to the individual’s relative fitness within the population. The algorithm
used in this thesis is similar to the simple genetic algorithm described in 7] and is

implemented in the following manner:

Reproduction Algorithm

1. Determine the sum of the fitness values for the entire population.
2. Rank the individuals from highest to lowest fitness.

3. Determine the cumulative fitness values of each individual, ranked from high-
est to lowest. These numbers should range from zero to the sum of the fitness

determined in step one.

4. Generate a random number from a uniform distribution ranging from zero to

the sum of the fitness.

5. Select parent 1 for mating whose cumulative fitness value is the nearest one

less than or equal to the random number.

6. Remove parent 1 from the available population for mating, and repeat the

steps above to select parent 2 .

3.4 Crossover

Crossover is the process of combining the parameter strings from two parents to

form new offspring individuals. It is performed in a manner independent of the
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actual numbers that those strings represent. For the multiparameter optimization
problem of this thesis, the 48 bit parameter strings consist of three 16 bit words,
each of which represents one of the gain parameters k;, k; or k3. Each parameter
word is scaled separately, so that it can represent a value between the kjy., and
kupper, to thé maximum resolution allowed by 16 bits. That is, the value of the least

significant bit for each parameter word is given by:

kLSB = (kupper - klower)/(zl6 - 1) (3-8)

In the genetic algorithm implemented in this thesis, two offspring (children)

are generated from two parents in the following manner:

Crossover Algorithm

1. Generate a random number uniformly distributed between 0.0 and 1.0. If this
number is less than the predetermined probability of crossover, p.,.ss, then
copy the parent parameter word directly into the child, and skip to the next -

parameter word. Otherwise, continue.

2. Generate a random number uniformly distributed between 1 and the number

of bits in a parameter word.

3. Swap the portion of the parameter words between the two parents that have

bit locations higher than this random number.

4. Repeat the above steps for every parameter word in the parameter string.
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The following example is given to illustrate this process for two single pa-

rameter word parent strings that are represented by the following bit sequences:
pp=1010101010101010 (3.9)

p,=1111000011110000 (3-10)

Assuming that the random crossover site number is 6, the following two single

parameter word child strings would be generated:
¢1=1010100011110000 (3.11)

c=1111001010101010 (3.12)

3.5 Mutation

Mautation is a further randomizing process that occurs at relatively low probability.
After reproduction and crossover have generated an offspring, mutation may change
the value of any bit in the resulting child strings from 0 to 1, or 1 to 0. Mutation

can be implemented in several ways, but the straightforward method implemented

in this thesis is as follows:

Mutation Algorifhm

1. For each bit in the child parameter strings, generate a random number uni-

formly distributed beteen 0.0 and 1.0.

2. If the random number for any bit in the child parameter string is less than
the predetermined probability of mutation, pmutation, change the value of that

bit. Otherwise leave the value of the bit unchanged.
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3.6 Algorithm Enhancements

The genetic algorithm described in the previous sections follows closely the simple
genetic algorithm described in [7]. There are, however, several notable differences,
or enhancements, to the genetic algorithm in this thesis, which for this problem at

least, improved its overall performance. These enhancements include:

Algorithm Improvements

1. Ensuring that no individual is mated with itself, if crossover is to be performed.

2. Copying the best 2 individuals directly into the next generation, without per-
forming crossover or mutation. These individuals are still available for mating,
but reduce the total number of matings required to fill the next generation.
This ensures that the maximum fitness function is monotonic, and that the

best genes are never lost.

3. Performing crossover separately on each parameter word in the multiparam-

eter string.

4. Scaling each parameter word separately to take advantage of a prior: infor-

mation, increase accuracy, and accelerate convergence.

5. Modifying the random distribution of the crossover site selection to favor high
order bits in early generations, gradually shifting to favor low order bits in
later generations. The idea is to force the genetic algorithm to make big
decisions early, then narrow its focus to fine tune the final answer. (This
experimental scheme was implemented and showed promise, but was not used

in the final optimization runs presented later in this thesis.)
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It should be noted that several other algorithm enhancements were attempted
during the course of this investigation that did not demonstrate any improvement
in the performance of the algorithm. Some of these even degraded its overall per-
formance. For completeness, the algorithm modifications which did not work are

listed below:

Unsuccessful Algorithm Enhancements

1. Modifying the parameter scale factors as a function of generation number,

attempting to squeeze the upper and lower limits toward the optimum values.

2. Saving the best individuals out of the combined old and new generations after

each round of reproduction, crossover and mutation.

3. Generating 2 new individuals at random during each generation, and reducing

the number of individuals generated by mating by 2.

4. Initializing a portion of the initial population to set strings in order to repre-

sent primitive Walsh function patterns in the initial population.

3.7 Convergence Criteria

In many optimization problems, it would be desired to determine a criteria for
algorithm convergence. One such method, suggested in reference [8], is to terminate

the algorithm when

1. The average fitness of the population is within 1% of the best fitness for that

generation, and ...

2. a minimum of 20 generations have been examined.
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In the example given in this reference for an LQR controller optimization problem,
it is observed that this convergence criteria was reached after about 65 generations.
It is also observed, however, that after about 15 generations, the best fitness is
within a few percent of its final value.

In the controller optimization problem of this thesis, we are interested in
obtaining the best fitness value and are less concerned with the average fitness
evolution of the population taken as a whole. For this reason, as well as to conserve
the computer time required in order to produce a given set of results, the genetic
algorithm was executed for a fixed number of generations for each optimization
run. It was found that 17 generations were sufficient to produce results within a

few percent of the peak fitness values for the cases studied in this thesis.
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CHAPTER 4

AUTOPILOT CONTROLLER
OPTIMIZATION

This chapter presents the results of the genetic algorithm application to the missile
autopilot control system optimization problem posed by this thesis. First, the stan-
dard steady state LQR solution is presented and the resulting closed loop system
response analyzed. Results for the genetic algorithm optimization of the analagous
problem, using a linear quadratic performance measure, are then presented and
compared. Additional design specifications are next imposed to meet peak actuator
effort, settling error, and rise time constraints. The results of the genetic algorithm
optimization for each successive combination of constraints is presented, culminat-
ing in a controller which satisfies all of the constraints. It is posited that the resulting
optimal controller is one for which analytic solutions are not available. Finally, the
performance of the genetic algorithm is examined by comparing its solutions to a
set of true optimum computer solutions found with the help of the Nelder-Meade
numerical search algorithm. The results of the genetic algorithm optimization stud-
ies were used to initialize the Nelder-Meade algorithm, and a numerical search was
continued to find the true optimum values.

The computer generated results presented in this thesis were obtained using
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the MATLAB software package, operating on a 20 Mega Hertz 386 personal com-
puter. MATLAB standard functions, as well as functions provided in the Control
Toolbox and Robust Control Toolbox, were utilized. Several MATLAB programs
and numerous special supporting functions were written in order to generate these
results, and are provided in the Appendices for reference. The MATLAB function,

FMINS, was used to perform the Nelder-Meade numerical optimization studies. '

4.1 Steady State LQR Solution

The standard steady state Linear Quadratic Regulator solution to the continuous
- state space system model, described in section 2.3, was determined by solving the
associated Algebraic Riccati equation. This was performed in MATLAB, using the
functin LQR2 provided with the MATLAB Control Toolbox. The resulting feedback

controller gains are shown below.

LQR Controller Gains

ky = -34.1723
ky, = - 3.6403
ks =  2.3434

The resulting closed loop discrete time system, which incorportes the LQR
feedback gains, was constructed and analyzed using the MATLAB program APS5.
Analysis of this analytic controller solution provides a confidence check for the
simulation programs and serves as a baseline design for estimating appropriate
ranges of the gain parameters to be used in the genetic algorithm.

The state variable time response of this system was generated by inserting a
unit step input into the angle of attack command variable (r; = 1). The resulting

transient response tends to be very active for the first few tenths of a second,
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then settles toward the steady state values within a few seconds. For simulation
purposes, a dual simulation time interval approach was implemented. First, the
transient portion of step response was generated using a simulation time interval
(d7) of .001 seconds, then the state transition matrix was recomputed, and the
steady state portion of the step response was generated using a time interval of
.01 seconds. This allows accurate integration during the period of high system
dynamics, yet conserves on the total computer time required to evaluate a given
configuration.

Figure 4.1 shows the actuator time response during the transient period from
0 to .2 seconds, from which the peak actuator response can be determined. Figure
4.2 shows the angle of attack response out to its assumed steady state value at
5.0 seconds. From this angle of attack history, the rise time and settling error
parameters can be determined.

Bode plots for the open loop system, evaluated with the LQR feedback gains,
are also obtained in AP5 by using the MATLAB Control Toolbox function BODE.
Likewise, gain margin (Gmargin), and phase margin (@margin) for this system are
computed using the Toolbox function MARGIN. Figure 4.3 shows the Bode plots
for the LQR feedback gain open loop system.

According to optimal control theory, the LQR controller design should ex-
hibit an infinite gain margin and a minimum of 60 degrees of phase margin [1]. The
phase margin can be obtained from the Bode plots, as the phase angle when the
gain crosses 0 dB. Likewise, the gain margin is obtained from the Bode plots, as the
gain value when the phase angle crosses 180 degrees. From these plots, it appears
that the theoretical stability margins have been achieved. The phase margin is
somewhat greater than 60 degrees, and the gain margin appears to be infinite, since

the phase appears to approach 90 degrees asymptotically and will never cross 180
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Figure 4.3: Bode Plots for the LQR Controller

degrees. Since no physical system can have infinite gain margin, we will henceforth

indicate only that this gain margin exceeds 90 dB.

Using the computer to numerically analyze these time and frequency re-

sponse histories, the following performance and stability margin characteristics are

extracted and summarized for the LQR controller design.

LQR Controller Characteristics

6ma.:c
€settle
brise
¢margin

Gm.argin

= 6.826
.079
151
72.77 deg.

(>90dB)
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4.2 Genetic Algorithm Optimization for the LQ

Performance Index

The genetic algorithm described in Chapter 3 was implemented using the MAT-
LAB program APGEN3, and configured to optimize for the Linear Quadratic per-
formance index (J), described in section 2.6. This was accomplished by setting the
GA cost function equal to the LQ performance index and computing the GA fitness
function as described in section 3.1. The system resulting from this optimization -
problem will hence be referred to as the: J Controller . This is the genetic algo-
rithm equivalent of the LQR design of the previous section, using identical Q and
R weighting matrices. In this case, however, numerical analysis of the discrete time
simulation response will be used to compute and optimize the GA fitness function.
Differences are to be expected due to the discrete time simulation intervals (.001
and .01 seconds) and the finite integration period (5 seconds) used for evaluation
of the performance index.

Snapshots of the genetic algorithm optimization process are shown in fig-
ures 4.4 through 4.8. The four plots in each of these figures are produced after each

generation of 30 individuals, and record the following information:
1. The fitness value for each individual in the current generation.

2. The three gain parameter values (ky, ky, k3) for each individual in the current

generation.
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As noted previously in section 3.4, each parameter word in the genetic algo-
rithm optimization process is scaled separately, so that it can only represent gain
values between kjoyer and kyppr. The results of the steady state LQR solution of
the previous section provide a good indication of both the magnitude and sign that
should be placed on these limits. Indeed, the resulting closed loop system is stable
only if k; and k; are negative, and ks is positive. Thus to accelerate the genetic

algorithm convergence, the following upper and lower values were chosen for scaling

the parameter words:

pararﬁeter Kktower  Kupper
ky -100.0 0.0
ko -50.0 0.0
ks 0.0 25.0

It should be noted however, that it is not necessary to limit the gain param-
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eters to the correct sign values in order for the genetic algorithm to work. Stability,
as a hard constraint, is contained within the quadratic performance index J. Un-
stable systems, due to an incorrect feedback gain sign, result in an extremely large
value of J, and are appropriately penalized by the reproduction function of the ge-
netic algorithm. In trials where kjou.r Was set to -100 and Kypper to +100 for all
three gain parameters, the genetic algorithm converged to the stable sign region for
all parameters within a few generations.

Several other parameters that are used to control the genetic algorithm pro-

cess were determined empirically, and were set as follows:

GA Parameters

population size = 30.000
probability of crossover (peyoss) = .800
probability of mutation (pmutation) = .025

Figure 4.9 shows the maximum fitness vs. generation in greater detail for the
J Controller optimization, and figure 4.10 shows best gain parameters plotted vs.
generation. It is seen that the genetic algorithm converges rapidly in this case, and
is within a few percent of its final gain values within 3 generations. The feedback

controller gains resulting after 17 generations are shown below.

J Controller Gains
ky, = -48.9113
k, = -6.2638
ks = 1.6400
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Figures 4.11 and 4.12 show the time response plots for the resulting J Con-
troller. Analysis of this controller design indicates the following characteristics:

J Controller Characteristics

Smaz = 9.7258
€settle = .0232
trise = 1970
Omargin = 48.0 deg.

Gumargin = (> 90dB)

While these characteristics do not match exactly those of the LQR Con-
troller, they are reasonably close considering the differences in implenienting the
discrete system equation, the finite integration inte:rva,l, and the numerical integra-
tion of the linear quadratic performance index. The J Controller will therefore be

used as a baseline for subsequent optimization results which incorporate additional

performance constraints.

4.3 Peak Actuator Response Constraint

The system performance characteristics of the J Controller compare favorably with
the characteristics of the LQR Controller design, having somewhat greater rise time
and peak actuator response, but less settling error. The J Controller also displays
adequate robustness characteristics, with gain and phase margins approaching the
theoretical values of the LQR Controller. Let us now assume that the actuator
system we wish to use has a physical limit of &+ 5 degrees of travel, and impose this
as a constraint on the peak actuator reponse. This constraint is incorporated into
the genetic algorithm optimization process by setting the actuator peak response

specification term:

$5 =5.0 ' (4.1)
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Maximum Fitness vs. Generation
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Generation
Figure 4.13: Genetic Algorithm - Maximum Fitness - JP; Controller

and computing the actuator peak response penalty (P;) as defined in equation 3.6.
This penalty is then added to the GA cost function, and the resulting genetically
optimized system becomes the JP; Controller.

Figure 4.13 shows the maximum fitness vs. generation in greater detail
for the JP; Controller optimization, and figure 4.14 shows best gain parameters
plotted vs. generation. The feedback controller gains resulting after 17 generations
are shown below.

J Ps Controller Gains
ky, = -66.0487

k, = -14.9935
ks = 9.1844
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Figure 4.14: Genetic Algorithm - Best Parameters - JPs Controller

Figures 4.15 and 4.16 show the time response plots for the JP; Controller.

Analysis of this controller design indicates the following characteristics:

J P; Controller Characteristics

6ma.:c
€settle
triae
¢marg|'n

Gma.rgin

It is observed that the peak

4.9977
1116
.3200

83.72 deg.
(>90dB)

actuator response constraint has been met by

the new controller design, and the stability margin data show that robustness has

not been compromised. However, it is noted that the settling error has increased

dramatically with this design. Rising from approximately 2% for the previous con-

troller, the settling error for this design is now over 11% of the commanded value.
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4.4 Settling Error Constraint

Let us now assume that the settling error observed in the J P; Controller is unsatis-
factory in terms of system performance, and impose this as an additional constraint
on the optimization problem. This constraint is incorporated into the genetic algo-
rithm by adding the weighted settling error penalty (P,..) as defined in equation
3.7 to the GA cost function. The resulting geneti_ca_\.lly optimized system, which
incorporates peak actuator response and settling error constraints, will be referred
to as the J PsPyetsie Controller.

Figure 4.17 shows the maximum fitness vs. generation in greater detail for
the J PsPyeisie Controller optimization, and figure 4.18 shows best gain parameters
plotted vs. generation. The feedback controller gains resulting after 17 generations

are shown below.

J Ps Pyertie Controller Gains

ky = -24.7425
k, = -17.0481
ks =  1.6289

Figures 4.19 and 4.20 show the time response plots for the JP; P, Con-
troller. Analysis of this controller design indicates the following characteristics:

J Ps Pyetsie Controller Characteristics

Omaz = 4.7937
€settle = 0377
trioe - .4400
Dmargin = 46.7 deg.

Gmargin = (> 90dB)
It is observed that the settling error has been reduced to less than 4% by

the new controller design, and peak actuator response constraint has been simul-
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Figure 4.19: Actuator Response for the J PsPyets1. Controller

taneously satisfied. Stability margin data also indicate that robustness has not
been compromised. However, it is noted that the rise time of the step response has
increased dramatically from .32 seconds for the previous design to a sluggish .44

seconds for this design.

4.5 Rise Time Constraint

Let us now assume that the sluggish rise time observed in the J Ps P,.¢;;. Controller is
unsatisfactory, and that the system performance specification requires that the rise
time be no greater that .3 seconds. This final additional constraint is incorporated
into the genetic algorithm optimization process, by setting the rise time specification

term:

Drise = .3 (42)
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Figure 4.20: Angle of Attack Response for the J P; P,.u. Controller

and computing the rise time penalty (5,i,.) as defined in equation 35 This penalty
is then added to the GA cost function, and the resulting genetically optimized
system becomes the J PsP,.s1. Prise Controller.

| Figure 4.21 shows the maximum fitness vs. generation in greater detail
for the J PsP,ettte Prise Controller optimization, and figure 4.22 shows best gain pa-
rameters plotted vs. generation. The feedback controller gains resulting after 17

generations are shown below.

J Ps Pyettic Prise Controller Gains
ky = -22.3987
ks = -4.5464
ks = 1.6514
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Figures 4.23 and 4.24 show the time response plots for the JPsP, .. Pui

8e

Controller. Analysis of this controller design indicates the following characteristics:

J Ps Pyessie Prise Controller Characteristics

Omaz = 4.8502
€settle = 0750
trise = .3000
Pmargin =  56.49 deg.

Gmargin = (> 90 dB )

It is observed that the rise time has been reduced to .3 seconds, which meets
exactly the system performance specification. Also, the peak actuator response is
within its physical limit of &= 5 degrees of travel. Meanwhile, the settling error
has increased to 7.5%, but is still lower than the 11% obtained with no settling
error penalty, and may be acceptable. Adequate gain and phase margins are also

maintained for robustness of this design.

4.6 Genetic Algorithm Performance

In order to determine the accuracy and performance of the genetic algorithm in
this application, the MATLAB program APNMOPT was constructed to find the
true optimum solution in each of the controller specifications presented. The APN-
MOPT program uses the standard MATLAB function, FMINS, which implements
the Nelder-Meade simplex algorithm to find the minimum of a multivariable func-
tion. Since it is known that this algorithm is not well suited for finding global
optimurms, the optimum gain values found previously by the genetic algorithm were
used as the initial guess required by the Nelder-Meade algorithm.

The true optimum gain and fitness function values obtained by the Nelder-

Meade algorithm for each of the four controller specifications studie, are summarized
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in the table below. The genetic algorithm results are also summarized in a similar

table for comparison.

Nelder-Meade Optimization Summary

Controller ki ks ks _Fitness
J -27.0995 -3.5254 0.4122 3.2230
J Ps -65.1220 -16.0587 8.8373 1.5807
J Ps Peettie -21.4221 -6.9169 0.7232 1.7239

J Ps Poettte Prise -22.2218  -4.4455 1.4819 1.3316

GA Optimization Summary

Controller Ky ks k3 _Fitness
J -48.9113 -6.2638 1.6400 3.1183
J Ps -66.0487 -14.9935 9.1844 1.5429
J Ps Peettie -24.7425 -7.0481 1.6289 1.4465

JPsPosttic Prine -22.3987 -4.5464 1.6514  1.2367

The resulting errors in the genetic algorithm optimized fitness functions are com-

pared with the true optimum values obtained with the Nelder-Meade algorithm in

the table below:

Peak Fitness Summary

Controller GA Optimum  True Optimum _Error

J 3.1183 3.2230 3.2%
J Ps 1.5429 1.5807 24%
J Ps Pyettte 1.4465 1.7239 16.1%
J Ps Poettte Prise 1.2367 1.3316 7.1 %

From the tables above, it is observed that the genetic algorithm optimum

values are close to the true optimum values, with a few possible exceptions. For
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the genetically optimized J Controller, the k; gain differed considerably from the
true optimum value. Nevertheless, this seemed to have little impact on the fitness
function, which was within 3.2% of the true optimum value. For the J P; P, .. Con-
troller, the GA fitness function was in error by 16.1%, yet the gains ky, ks, and ks
were reasonably close to their true optimum values.

The performance characteristics of the four genetically optimized controllers
have been previously analyzed, and are summarized for reference in the table below.
Likewise, the performance characteristics of the controllers using the Nelder-Meade
true optimum gain values afe also tabulated below. From this comparison, it is
apparent that the GA optimized controllers, although somewhat suboptimal, have
good performance characteristics that reflect the embedded combinations of design

criteria.

GA Optimized Controller Characteristics

_Controller_ Omaz €settle Lrise ¢margin

J 9.7258 .0232 .1970 48.0 deg
J Ps 49977 1116 .3200 83.7 deg
J Ps Pyettic 4.7937 .0377 .4400 46.7 deg

J Ps Psetsie Prise  4.8502 0750 .3000 56.5 deg

True Optimum Controller Characteristics

Controller Omaz €settle trise Dmargin
J 8.2360 .0207 .2000 32.9 deg
J Ps 5.0000 .1015 .3500 82.1 deg
J Ps Pettie 49156 .0000 .5200 31.6 deg

JP6 Psgttlc Prise 5-0000 .0679 .3000 53-73 deg
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For better understanding of the sensitivity of the fitness function to the
independent parameters, three comparison plots have been made for each controller
specification. Since the resulting four dimensional performance surfaces are difficult
to visualize and impossible to represent in two dimensions, the following procedure

was used:

1. Evaluate and plot the ﬁtn_ess function vs. k;, while holding constant the GA

optimum values for k; and ks.

2. Evaluate and overlay on this plot the fitness function vs k;, for constant true

optimum values of k; and ks.

3. Repeat 1. and 2. above, but generate plots vs. k,, while using constant values

of ky and ks.

4. Repeat 1. and 2. above, but generate plots vs. ks, while using constant values

of ky and k,.

The resulting parametric fitness function comparisons are shown in figures
4.25 through 4.27 for the J Controller, figures 4.28 through 4.30 for the JP; Con-
troller, figures 4.31 through 4.33 for the JPsP,uu. Controller, and figures 4.34
through 4.36 for the J P;Psettic Prise Controller. These figures were generated us-
ing MATLAB program APOPLOT after the GA and true optimum parameters
were known. The (*) on each plot marks the peak value for the true optimum of
the fitness function found by the Nelder-Meade algorithm. The (X) on each plot
marks the optimum fitness value found by the genetic algorithm for that case.

As indicated by these results, the genetic algorithm converged to near opti-
mal controller designs, within 17 generations, for each progressively more difficult

combination of design constraints. It should be noted that the 17 generations of
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Figure 4.25: Fitness Function vs k; for the J Controller Specification

30 individuals represent only 478 combinations (or less) of the three gain parame-
ters (allowing for the fact that the two best individuals are duplicated exactly in
each following generation). For practical applications, however, mbre than 17 gen-
erations may be required to assure accurate convergence of the genetic algorithm.
The previously cited example by Goldberg required a.pproxima.tely 65 generations
to converge [8]. Perhaps a useful strategy would be to use the genetic algorithm for
some number of generations to assure global optimality, then switch to a more or-
thodox numerical search method, such as the Nelder-Meade algorithm, to converge

on the final optimum.
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Figure 4.31: Fitness Function vs k, for the J P;s P,y Controller Specification
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Figure 4.32: Fitness Function vs k; for the J Ps Psetsie Controller Specification
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Figure 4.33: Fitness Function vs k3 for the J Ps P41 Controller Specification
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CHAPTER 5

CONCLUSIONS

In this thesis a control system optimization problem was formulated with respect to
a simple pitch plane missile autopilot. Linearized missile airframe and actuator dy-
namics models were developed, and a linear state feedback controller was assumed.
A set of hypothetical flight parameters were assumed, and a discrete time state
space simulation model for the closed loop system was developed.

A discretized linear quadratic performance measure was developed, which
can be computed numerically from the closed loop simulation model. Additional
performance specifications were then imposed to provide constraints on peak actu-
ator response, settling error, and rise time performance. It was posited that the
resulting multicriterion optimization problem was one for which analytic solutions
are not available.

The genetic algorithm was then introduced, and a suitable fitness measure
was developed that could incorporate the stated performance measure and auxillary
constraints. Computer simulation results were then presented that demonstrate the
genetic algorithm provides good convergence to near optimal controller designs for
successive combinations of constraints. The final genetically optimizedv controller
was designed to minimize a linear quadratic performance index, while simultane-

ously minimizing settling error and satisfying hard constraints on peak actuator
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response and minimum rise time performance. The demonstrated success of the

genetic algorithm in this application satisfies the objective of this thesis.

5.1 Future Applications

From this vantage point, future applications for the genetic algorithm in control
system optimization seem promising and virtually unlimited. A simple application
system model was used in this thesis primarily to meet time and computer resource
constraints. Given sufficient processing resour.ces, however, the closed loop system
model evaluated by the genetic algorithm for this application could be replaced by
a full scale simulation of arbitrary complexity.

Further investigations into suitable performance measures and the incorpora-
tion of many additional design contraints are also warranted. Robustness contraints
were not addressed directly in this thesis; rather robust stability margins were
achieved as a property of full state feedback and application of the linear quadratic
performance index. A viable area of study would be to incorporate multivariable
robust control specifications into the genetic algorithm fitness function.

The linear feedback controller form used in this thesis was also selected as a
comfortable starting place. Most real world control system design problems do not
enjoy the luxury of full state feedback, free of sensor noise and time defay. Applica-
tion of the genetic algorithm optimization approach could easily be applied to other
forms of controllers. Realistic control systems applications involving reduced order
observers and optimal stochastic observers should be investigated. The GA could
potentially be used to optimize both controller and observer in such configurations.

Finally, there is no reason to limit the genetic algorithm optimization procéss

to linear systems, or even to time invariant systems. For time varying systems, it
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may one day be possible to implement a genetic algorithm optimization loop in real
time. This depends of course upon such things as the processing power available,
the complexity of the problem, and the real time available for the optimization
loop. It may be seen however, that the genetic algorithm has an inherent advan-
tage for real time implementation within a parallel proceésing environment. This
natural parallelism of the genetic algorithm can be exploited, for example, by in-
voking simultaneous evaluation of the fitness function for all the individuals (32,
or 64, or 128, ...) in a given generation, each assigned to a separate processor.
These evaluations are the most time consuming operations of the genetic algorithm
optimization process. The serial operations required to select and mate individuals
between generations represent only a small fraction of the total processing time
requirements!

Not every controller optimization problem is feasible, but for those that are
feasible, the genetic algorithm can provide a useful tool for automating the controller

design process.
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APPENDIX A

MATLAB Programs

Several programs were written in MATLAB to produce the analysis and generate
the various plots presented in this thesis. This appendix briefly describes the main -
programs that were used and provides a listing of these programs. The supporting
functions that were created in MATLAB especially for these programs are described
in the following appendix. In addition these programs require numerous standard
MATLAB functions, as well as supporting functions from the MATLAB Control
System Toolbox [13,10].

A.1 APGEN3

This MATLAB program implements a genetic algorithm in order to optimize a mis-
sile linear feedback controller. It provides continuous on screen plots demonstrating
algorithm progress, and provides automatic or manually controlled options to send
output to a printer. Several experimental options are controlled by use of option
flags, as explained in the comments.

A listing of this program follows.
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echo on
clc
% APGEN3 - Autopilot Genetic Algorithm Design Program 2
% - optimize three parameters k1 & k2 & k3
% - airframe model only
% - with linear feedback controller
% - numerical cost function computation
% for optimization studies
% - using LQR cost function .
% - EVALPOP3 includes rise time penalty ( 1/26/93 )
% - corrected N_delta ( 2/8/93 )
% - Actuator model ( 2/8/93 )
% - EVALPOP4 to include hang off error penalty (2/8/93)
% - EVALPOP5 to use 3 parameterr ( 2/9/93 )
% - Limit squeeze algorithm ( 2/10/93 )
% - Option to vary crossover site distribution with
% generation number ( 2/156/93 )
% - EVALPOP6 to include actuator max response penalty
h ( 2/23/93 ) .
% - Add hoe_thresh to EVALPOP6 ( 2/24/93 )
% - EVALPOP7 and STEP2S to use split dt’s for evaluating
% step function - to correct actuator norm ( 3/1/93 )
)
% by R. Hull, 2/9/93
)
% This program implements a genetic algorithm to optimize the
% autopilot controller for a simplified missile autopilot system.
% Special Constants :
HztR = 2%pi; % Converts Hz to Radians per Second
walsh_string = [1010101010101010
1100110011001100
1111000011110000
1111111100000000
1111111111111111
0101010101010101
0011001100110011
0000111100001 111
0000000011111111
0000000000000000]
% Global Variables :
global cont_plot ;
cont_plot = 1 ; % Continuous plot flag
auto_plot = 1 ; % Automatic plot flag ( to printer )
combine_flag = 0 ; % Option to combine old and new populations

% and save the best individuals of both.




%

% J

% J
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xover_flag = 0 ; % Use crossover site distribution as a
% function of generation number.

squeeze_lim = 0 ; % Squeeze limits flag

Genetic Algorithm Structures

maxgen = 17 ; % total number of generations
print_gen = 4 ; % number of generations per output loop
popsize = 30 ; % number of individules in population
% - must be even !
topsize = 2 ; % number (even) of top ranked individuals to

% propagate exactly in the next generation

if combine_flag == % Make sure topsize is O if combine option
topsize = O ; % is used.

end ;

newsize = 0 ; % number ( even ) of new random individuals
% to include in each new generation

numparams. = 3 ; % number of parameters to optimize

paramlength = 16 ; % number of bits per parameter

stringlength = numparams * paramlength ; % genetic string length

% ( bits )

dt = .01 ; % Computaion interval - sec.

t_final = 5.0 ; % cost & fitness function final time - sec.

dts = .001 ; % Small computaion interval - sec.

ts_final = 0.2 ; % Small dt response final time - sec.

dtl = .01 ; % Small cpmputaion interval - sec.

tl_final = 5.0 ; % Small dt response final time - sec.

Controller Specification :

hoe_thresh = 100.0 ; % settling error penalty threshold

phi_rise = 100.0 ; % rise time penalty threshold

act_thresh = 100.0 ; % maximum actuator response specification
% penalty threshold

Pd Controller Specification :

hoe_thresh = 100.0 ; % settling error penalty threshold
phi_rise = 100.0 ; % rise time penalty threshold

act_thresh = 5.0 ; % maximum actuator response specification

% penalty threshold
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% J Pd Psettle Controller Specification :

hoe_thresh = 0.0 ; % settling error penalty threshold
phi_rise = 100.0 ; % rise time penalty threshold ,
act_thresh = 5.0 ; % maximum actuator response specification

% penalty threshold

% J Pd Psettle Prise Controller Specification :

%

hoe_thresh = 0.0 % settling error penalty threshold

phi_rise = .30 % rise time penalty threshold

act_thresh = 6.0 % maximum actuator response specification
% penalty threshold

il

% Verify controller specification

pause
pcross = .8 ;- % probability of crossover
pmutation = .02b % probability of mutation
kg_scale = [ -100 ©
-60 0
0 251 ; % gain parameter scales
init_scale = kg_scale % used for limit squeeze algorithm

squeeze_factor = 0.9 % used for limit squeeze algorithm (< 1.0)

squeeze_buffer = 2.0 % used for limit squeeze algorithm ( > 0 )

Flight Condition Constants :

M_alpha = 64.11;

M_delta = -62.34;

M_thetadot = O;

N_alpha = .1803;

N_delta = .0738;

Tau_act = .02 ; % Actuator first order time constant
Velocity = 892.0; % meters/sec

% Units Conversions

% Define Airframe + First Order Actuator State Space Realization :

A=[-N_alpha 1.0 - N_deita
M_alpha 0 M_delta
0 0 -(1/ Tau_act ) 1 ;
B=1[ 0

0
(1 / Tau_act ) 1]
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Q
]

[ ( N_alpha * Velocity ) O ( N_delta * Velocity ) ] ;

D=[01];

% Determine LQR design for basic plant with first order actuator :

‘gmatrix = [ 10 0 O
0.1 0
0 0 .01 1;
rmatrix = .01;

% Initialize time values

t = 0:dt:t_£final ;

ts 0:dts:ts_final ;

tl

ts_final:dtl:t1_final ;
% Set screen display format to suppress excessive line feeds

format compact ;

% Experimental Option to Initialize Population using Walsh Strings
P P g g
% mnew_chrom = [ ] ;
% for iw = 1 : popsize

% mnew_chrom = [ new_chrom ;

% walsh_string( iw, : ) walsh_string( iw, : ) walsh_string( iw, : ) ]
% pause
% end ;

% Initialize New Population to Random Strings

new_chrom = fix( 1.9999999 * rand( popsize, stringlength ) ) ;

% Clear generational statistics
gen_avg_fitness = [ ] ;

gen_max_fitness = [ 1 ;

gen_max_param = [ ] ;
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gen_max_chrom = [ ] ;

gen_min_fitness = [ ] ;

gen_min_param = [ ] ;
gen_min_chrom = [ ] ;
gen_kg_lower = [ ] ;
gen_kg_upper = [ ] ;

gen = 1 ; % generation number

% Evaluate Fitness of Initial Population

[ new_fitness, new_param ] = evalpop7( A, B, C, D, ts, dts, tl, dtl,
hoe_thresh, phi_rise, act_thresh, popsize, kg_scale, new_chrom )

% Evaluate Initial Population Statistics

avg_fitness = sum( new_fitness ) / popsize ;

[ max_fitness, imax ] = max( new_fitness ) ;

max_param = new_param( imax, : ) ;

max_chrom = new_chrom( imax, : )

[ min_fitness, imin ] = min( new_fitness ) ;

min_param = new_param( imin, : ) ;

min_chrom new_chrom{ imin, : ) ;

% Save initial generation data :

gen_avg_fitness = [ gen_avg_fitness ; avg_fitness ] ;

gen_max_fitness [ gen_max_fitness ; max_fitness ] ;

gen_max_param = [ gen_max_param ; max_param ] ;

gen_max_chrom [ gen_max_chrom ; max_chrom ] ;
gen_min_fitness = [ gen_min_fitness ; min_fitness 1 ;

gen_min_param = [ gen_min_param ; min_pafam 1 ;

gen_min_chrom = [ gen_min_chrom ; min_chrom ] ;

gen_kg_lower = [ gen_ kg lower ; kg_scale( :, 1)." ] ;



gen_kg_upper = [ gen_kg_upper ; kg_scale( :, 2 ).' ] ;
% Display or plot values to screen
if cont_plot == 1
clg .

% Plot of fitness vs individual for this generation :
subplot (221) ;
ind_num = 1 : popsize ;
plot( ind_num, new_fitness ),
title([’Generation Number °’, int2str(gen)]
xlabel(’Individual’), ..
ylabel('Fitness'),..
grid

% Plot parameter k1 vs individual for this generation :
subplot(223) ;
ind_num = 1 : popsize ;
axis([ O popsize kg_scale(1,1) kg_scale(1,2) 1) ;
plot( ind_num, new_param(:,1) ),
title([’Generation Number ', int2str(gen)]
xlabel(’'Individual’),..
ylabel(’Parameter: k1'),..
grid

% Plot parameter k2 vs individual for this generation :
subplot(222) ;
ind_num = 1 : popsize ;
axis([ O popsize kg_scale(2,1) kg_scale(2,2) 1) ;
plot( ind_num, new_param(:,2) ), :
title([’Generation Number °, int2str(gen)]
xlabel(’Individual’),..
ylabel('Parameter: k2'),..
grid

% Plot parameter k3 vs individual for this generation :
subplot(224) ;
ind_num = 1 : popsize ;
axis([ 0 popsize kg_scale(3,1) kg_scale(3,2) ] ) ;
plot( ind_num, new_param(:,3) ) ,
title([’'Generation Number ', int2str(gen)]
xlabel(’Individual’),..
ylabel(’Parameter: k3’),..
grid ’

if auto_plot == 1, print, shg, end ;
else

generation = [ gen, avg_fitness, max_fitness, min_fitness ]
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end ;
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while 1 % operator control loop

% Genetic Algorithm Optimization Loop

for igen = 1 : print_gen

gen = gen + 1 ;

% Save 0ld Generation

old_fitness = new_fitness ;

old_chrom

I

new_chrom ;

old_param = new_param ;

[]

new_chrom

.
’

sum_fitness = sum( old_fitness ) ;

% Squeeze Limits Algorithm

if squeeze_lim
for np = 1

last_lower
last_upper

data_lower
data_upper

== 1

o n

umparams

kg_scale( np, 1) ;
kg_scale( np, 2 ) ;

min( old_param( :, np )) ;
max( old_param( :, np )) ;

[ best_fitness, imax ] = max( old_fitness ) ;

best_param

old_param( imax, np ) ;

% Squeeze limits toward best parameter value
q P

new_lower =

new_upper =

best_param -
squeeze_factor * abs( last_lower - best_param );

best_param + ..
squeeze_factor * abs( last_upper - best_param );

% New limits cannot exclude old data

if new_lower > data_lower
new_lower = data_lower ;

end ;

if new_upper < data_upper
new_upper = data_upper ;
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end ;

% New limits must maintain a buffer distance from the best
% parameter value ( Note - the best value can thus push
% the limits outward ! )

if new_lower > ( best_param - squeeze_buffer )
nevw_lower = best_param - squeeze_buffer ;
end ;

if new_upper < ( best_param + squeeze_buffer )
new_upper = best_param + squeeze_buffer ;
end ;

% Round to integer value ( toward + / - infinity )

i

new_upper = ceil( new_upper ) ;

new_lower floor(vnew_lower ) ;

% Do not let limits exceed initial values
if new_lower < init_scale( np, 1 )
new_lower = init_scale( np, 1 );

end ;

if new_upper > init_scale( np, 2 )
new_upper = init_scale( np, 2 );

end ;
% out_put = [ igen, np, best_param, new_lower, new_upper ]
% pause

kg_scale( np, 1 ) = new_lower ;

kg_scale( np, 2 ) = new_upper ;

% Recompute chromosome strings based on new scale values
for ipo = 1 : popsize

new_string = conv2str( old_param( ipo, np ),
new_lower, new_upper ) ;

if np ==
old_chrom( ipo, 1:16 ) = new_string ;
elseif np == 2

old_chrom( ipo, 17:32 )
elseif np == 3

old_chrom( ipo, 33:48 )
end ;

new_string ,

]

new_string ;

end ; % for ipo loop

end ; % for np loop
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end ; % End of Squeeze limits

% Create New Generation
% Copy top ranked individuals exactly into next generation
if topsize > O

[ rank_fitness, rank_index.] = sort( old_fitness ) ;

top_chrom = old_chrom( rank_index( popsize - topsize + 1 ..

: popsize ), : ) ;
new_chrom = [ new_chrom ; top_chrom 1 ;

end ; % ( if topsize )

% Generate number of nmew random individuals in next generation

if newsize > O
random_chrom = fix( 1.9999999 * rand( newsize, stringlength ) );
new_chrom = [ new_chrom ; random_chrom ] ;

end ; % ( if newsize )

% Generate remaining number of individuals by mating parents

% of previous generation

nloops = fix( ( popsize - topsize - newsize ) / 2 ) ;

for i = 1 : nloops |
% - Select Parents

[ p_1, p_2 1 = select( popsize, sum_fitness, old_fitness ) ;

parent_1 = old_chrom( p_1, : ) ;

parent_2 = old_chrom( p_2, : ) ;
% - Create 2 Children, and Perform Crossover

child_1 = parent_1 ;

child_2

parent_2 ;

% - Perform Crossover separately on each parameter

for ip = 1 : numparams
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if rand <= pcross
if xover_flag ==

xsite = selxsite( paramlength, gen ) ;
else

xsite = fix( rand * ( paramlength - 1)) + 1 ;
end :

= (ip-1) * paramlength +1 ;
x2 = x1 + xsite - 1
child_1( x1 : x2 ) = parent_2( x1 : x2 ) ;
child_2( x1 : x2 ) = rent_l( x1 : x2) ;
end ; % ( if rand )
end ; % ( for ip )

% Perform bit by bit mutation on each child
mu_string = rand( 1, stringlength )

index = find( mu_string <= pmutation ) ;
child_1( index ) = ~ child_1( index ) ;
mu_string = rand( 1, stringlength ) ;

index = find( mu_string <= pmutation ) ;
child_2( index ) = ~ child_2( index ) ;
new_chrom = [ new_chrom ; child_1 ; child_2 ] ;

end ; % ( For i)

% Evaluate Fitness of New Population

[new_fitness, new_param] = evalpop7( A, B, C, D, ts, dts, tl, dtl,..
hoe_thresh, phi_rise, act_thresh, popsize, kg_scale, new_chrom );

% Option to combine old population with new population and only
% save best individuals from both

if combine_flag ==
combine_fitness = [ old_fitness ; new_fitness ] ;

combine_chrom = [ old_chrom ; new_chrom ] ;

combine_param = [ old_param ; new_param 1 ;
combine_size = 2 * popsize ;
[ rank_fitness, rank_index ] = sort( combine_fitness ) ;

new_index = rank_index( combine_size - popsize + 1
combine_size ) ;




new_chrom = combine_chrom( [ new_index 1, : ) ;

new_param = combine_param( [ new_index 1, )

new_fitness =

% Debug output :

combine_fitness( [ new_index ] ) ;

% rank_fitness, pause

% rank_index, pause

% combine_fitness, pause
% new_fitness, pause

% combine_param, pause
% new_param, pause

end ;

% Evaluate Population Statistics

avg_fitness = sum( new_fitness ) / popsize ;

[ max_fitness, imax ] = max( new_fitness ) ;

#

max_param = new_param( imax,

max_chrom = new_chrom( imax,

[ min_fitness, imin ] = min( new_fitness )

1)

min_param = new_param( imin,

min_chrom = new_chrom( imin,

% Save generational data :

gen_avg_fitness

gen_max_fitness

gen_max_paranm

gen_max_chrom
gen_min_fitness

gen_min_param =

gen_min_chrom =

gen_kg_lower

gen_kg_upper =

1)
1)

:)

.
’

[ gen_avg_fitness ; avg_fitness ] ;'

[ gen_max_fitness ; max_fitness ] ;

[ gen_max_param ; max_param ] ;

[

[ gen_min_param
[ gen_min_chrom
[ gen_kg_lower ;

[ gen_kg_upper ;

gen_max_chrom ; max_chrom ] ;

[ gen_min_fitness ; min_fitness ] ;

; min_param ] ;
: min_chrom ] ;
kg_scale( :, 1)." 1 ;

kg_scale( :, 2).' ] ;
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% Display or plot values to screen
if cont_plot == 1
clg .

% Plot of fitness vs individual for this generation :

subplot (221) ;

ind_num = 1 : popsize ;

axis ; % reset scaling to automatic

plot( ind_num, new_fitness ), :
title([’Generation Number ', int2str(gen)] ),..
xlabel('Individual’),..
ylabel(’Fitness'),..
grid

% Plot parameter k1 vs individual for this generation :

subplot(223) ;

ind_num = 1 : popsize ;

axis([ 0, popsize, kg_scale(1,1), kg_scale(1,2) 1) ;

plot( ind_num, new_param(:,1) ),
title([’Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),..
ylabel(’Parameter: ki1'),..
grid

% Plot parameter k2 vs individual for this generation :

subplot(222) ;

ind_num = 1 : popsize ;

axis([ O, popsize, kg_scale(2,1), kg_scale(2,2) 1) ;

plot( ind_num, new_param(:,2) ), :
title([’'Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),..
ylabel('Parameter: k2'),..
grid

% Plot parameter k3 vs individual for this generation :

subplot(224) ;

ind_num = 1 : popsize ;

axis([ O, popsize, kg_scale(3,1), kg_scale(3,2) ] ) ;

plot( ind_num, new_param(:,3) ),
title([’'Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),..
ylabel(’'Parameter: k3'),..
grid

else
generation = [ gen, avg_fitness, max_fitness, min_fitness ]

end ;

end ; % ( for igen loop )
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if auto_plot == 1, print, shg, end ; 7% output to printer

% char = input( ’ To continue with more generations enter : y ', ’'s’
% if stremp( char, 'y’ ) == 1

A shg ;

% else

% break ;

% end ;

if gen >= maxgen, break, end; % break operator control loop

end ; % ( while - operator control loop )

subplot % return to default, i.e. full screen plots

% Plot of Maximum Fitness Function :

gen_num = 1 : gen ;
axis ; % reset scaling to automatic
plot( gen_num, gen_max_fitness ),
title(’Maximum Fitness vs. Generation'),..
xlabel(’Generation’),..
ylabel(’Maximum Fitness'),..
grid '

% Always output Maximum Fitness Function :

print ;

% Plot of best parameter vs generation number :
gen_num = 1 : gen ;
genpil = gen + 1 ;

axis([ O, genpl, -100, 20 ] ) ;
plot( gen_num, gen_max_param( ,1),' -
gen_num, gen_max_param( :,2),’'--
gen_num, gen_max_param( :,3),'-.'),.. _
title(’Best Parameters vs. Generation'),..
xlabel(’Generation’),..
ylabel(’Best Parameters: ki, k2, k3'),..
text( gen + .26 , gen_max_param(gen,1), 'ki’),..
text( gen + .25 , gen_max_param(gen,2), 'k2),..
text( gen + .25 , gen_max_param(gen,3), 'k3’),..
grid

% Always output best parameters function :
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print ;

% Output final best parameters and fitness data to screen :

gen

gen_max_fitness( gen )
gen_max_param( gen, : )
pause

% Plot of Average Fitness Function :

gen_num = 1 : gen ;

axis ; % reset scaling to automatic

plot( gen_num, gen_avg_fitness ), :
title(’Genetic Algorithm - Average Fitness'),..
xlabel(’Generation’), ..
ylabel(’Average Fitness'),..
grid,pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y',’s’)
if stremp( char, 'y’ ) == 1
print
end ;

% Plot of kg scale limits vs generation :
gen_num = 1 : gen ;

plot( gen_num, gen_kg_lower(:,1), '-’', gen_num, gen_kg_upper(:,1), '-’,
gen_num, gen_kg_lower(:,2),'--', gen_num, gen_kg_upper(:,2),’'--’,.
gen_num, gen_kg_lower(:,3),’-.’, gen_num, gen_kg upper(:,3),’-.’),

title(’- Gain Scale Limits -'),..
xlabel(’Generation’),..
ylabel(’Limits’),..

grid, pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,'s’)
if stremp( char, 'y’ ) ==
print
end ;

% Set the gain to the maximum value of the last generation :
kgain = gen_max_param( gen, : )

% Use program APb to evaluate these gains !
pause

clc
% APGEN3 - program completed !
p p
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A.2 AP5

This MATLAB program builds the airframe aﬂd linear feedback controller state
space model and provides several functions for off-line analysis and plots. It uses
the Control System Toolbox LQR2 fuction to determine the optimum steady state
Linear Quadratic Regulator design by solving the associated continuous-time Ric-
cati equation. It is also used to analyze other designs by manually overriding the
LQR gains.

This program then generates a step response of the resulting closed loop
control system and provides analysis of various cost and fitness measures. Next, it
generates step response plots of the state and control variables. Finally, it provides
frequency domain analysis and plots of the open loop control system.

A listing of this program follows.

echo on
clc
% AP5 - Autopilot Design and Analysis Program # 5
% - airframe model only
% - with linear feedback controller
% - for LQR design
A by R. Hull, 10/5/92
%
% - corrected for N_delta sign error in B matrix
% 1/28/93
% - modified to use the step2 step response function
) 2/1/93
% - modified to use the step3 response function 2/4/93
% - back to step2 function 2/8/93
% - use step2s to compute dual dt step response 3/1/93
%
% This program builds the linearized missile airframe model
% with unity accelerometer and gyro feedback models.
¢,
% Special Constants :
HztR = 2%pi; % Converts Hz to Radians per Second

% Flight Condition Constants :



%

M_alpha = 64.11;
% M_delta = -20.00

M_delta = -62.34;

M_thetadot = O;

N_alpha = .1803;
N_delta = .0738;
Tau_act = .02

Velocity = 892.0;
Flight_Time = 30.

Units Conversions

format compact ;
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% Reduced fin effectiveness

- % First order actuator time constant
% meters/sec
0; % seconds

First - create plant model without computation delay and generate
LQR controller gains

Define

A

Q
n

Airframe + First Order Actuator State Space Realization :

[ - N_alpha
M_alpha
0
[ 0
0
(1 / Tau_

1.0 - N_delta

0 M_delta
0 -(1/ Tau_act ) ] ;
act ) ]

[ ( N_alpha * Velocity ) O

fo1l;

( N_delta * Velocity ) 1 ;

% Determine LQR design for basic plant with first order actuator :

gmatrix

rmatrix

[ 1

[eNeN e

.01;

OO

0
0
.01

1;

% kgain = 1qr2(A,B,qmatrix,rmatrix);

% LQR design gains :
% kgain
% pause

kgain = [ -34.1723
Genetic

kgain
kgain
kgain

[ -48.9113
[ -66.0487
[ -24.7425

-3.6403 2.3434 ]
Algorithm Gains:
-6.2638 1.6400 ]
-14.9935 9.1844 ]

-7.0481

1.6289 ]

% LQR gains

% J Controller
% J,Pd Controller
% J.,Pd,Psettle Controller
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kgain = [ -22.3987 -4:6464 1.6514 ] ; % J,Pd,Psettle,Prise Controller

% Now - formulate open loop control system for
P P y

% linear state feedback control
% and determine gain and phase margins of open loop system
Aopen = A
Bopen = B
Copen = - kgain
Dopen = [ O]

% Now - formulate closed loop regulator with

% linear state feedback control

% to determine step response of closed loop system
hoec = 1.0 % hang off error compensation
Ac = A - B * kgain
Bc = hoec * B * kgain
Cc = C - D * kgain
Dc = hoec * D * kgain

% Set Cc & Dc matrices to force output equal to comntrol

Cc = - kgain

Dc = hoec * kgain

% Define hard limits for state responses :
% ( used in step3 function )

Slim = [ - Inf 1Inf
- Inf Inf
- 100.0 100.0 1 ;

% Gains used :
kgain

pause % Strike any key for step response ...

% Now compute the step response :
dtl = .01 ;

t1l_final = 5.0 ;




dts = .001 ;
ts_final = 0.2 ;
ts = 0 : dts : ts_final ;

tl

ts_final : dtl : tl_final ;
% Now compute the step response :

Re = [

OO

1 % Reference Input Commands
[ys,yl,xs,x1] = step2s(Ac,Bc,Cc,Dc,Rc,dts,ts,dtl,tl);

% Evaluate the cost function separately for small and large dt

% responses and sum to get total :

r=[1 0 0] ; % indicates desired step response

j1 = jecost( xs, r, ys, gqmatrix, rmatrix, dts );

j2 = jecost( x1, r, yl, gmatrix, rmatrix, dtl );
=1+ 32
% Evaluate the rise time
lens = length( ts ) ;
t_rise = risetime( xs(:,1), ts, .8 ) §
if t_rise >= ts( lens )
t_rise = risetime( x1(:,1), t1, .8 ) ;
end ;
% Determine infinity norm of actuator response
act_norm = infnorm( xs(:,3) ) ;
% Determine the Hang Off Error in state 1 ( final vélue error )
[ xrows, xcols ] = size( x1 ) ;
hang_off_error = x1( xrows, 1) - r( 1) ;

% Gains used :
kgain

% Cost function :
i

% Rise Time :



%

%

%
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t_rise

Settling error :
hang_off_error

Actuator peak response
act_norm

Strike Enter to Actuator Step Response ...
pause ;

clg

axis([0,ts_final,-10,10])

plot(ts,xs(:,3)), title(’Actuator Step Response’),..
xlabel(’'Time - sec’),..
ylabel(’Actuator Angle - deg’),..
grid,pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,'s’)

if strcmp( char, 'y’ ) ==
print
end

% Steady State Step Angle of Attack Response :

clg

axis([0,t1_final,0,21)

plot(ts,xs(:,1),t1,x1(:,1)),..
title(’Angle of Attack Step Response’),..
xlabel('Time - sec’),..
ylabel(’Angle of Attack - deg'),..
grid,pause : '

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,’'s’)

if stremp( char, 'y’ ) == 1
print
end

% Strike any key - for Gain and Phase Margins ...
pause

echo off
w = logspace(-1,7,160);
[mag,phase] = bode( Aopen,Bopen,Copen,Dopen,1,w);
[LGm,HGm,Pn,WLg,WHg ,Wecp] = margin2( mag, phase, w )

% Note - MARGIN2 is just a modified form of MARGIN to accept
% mag in dB.
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fprintf( ..
* Freq = %8.2f rad/sec Low Freq Gain Margin = %8.2f dB\n’,..
WLg, LGm )
fprintf( ..
' Freq = %8.2f rad/sec High Freq Gain Margin = %8.2f dB\n’,..
WHg, HGm )
fprintf( ..

Freq = %8.2f rad/sec Phase Margin = %8.2f deg\n’, Wcp, Pm )

echo on

% Strike any key - for Bode Plot ...
pause

clg
subplot(211)
axis([-1,7,-100,100])
semilogx(w,mag), title(’Open Loop CAS delta frequency response’),..
xlabel(’Radians / sec’),..
ylabel(’Gain - dB’),..
grid, ..
subplot (212)
axis([-1,7,-200,2001)
semilogx(w,phase), title(’'Phase response’)
xlabel(’Radians / sec’),..
ylabel('Phase - Deg’),..
grid, ..
pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,'s’)

if stremp( char, 'y’ ) == 1
print
end

subplot % return to default, i.e. full screen plots

% Strike any key - for Nyquist plot ...
pause '

w = logspace(-1,3,80);
[re,im] = nyquist( Aopen,Bopen,Copen,Dopen,i,w);

clg

axis

plot(re,im), title(’Open Loop CAS delta Nyquist Plot’),..
xlabel(’'real axis'),..
ylabel('imaginary axis'),..
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grid, ..
pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y',’s’)

if stremp( char, 'y’ ) ==
print
end

% Strike any key - for Zoomed Nyquist plot :
pause

clg
axis([-10,0,-5,6]) :
plot(re,im), title(’Open Loop CAS delta Nyquist Plot'),..
xlabel(’real axis’),..
ylabel(’imaginary axis’),..
grid, ..
pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y','s’)
if strcemp( char, 'y’ ) == 1
print
end

clc

% AP5 - program completed !
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A.3 APNMOPT

This MATLAB program determines the true optimum fitness function for a given
controller specification, using the MATLAB function FMINS, which implements a
Nelder-Meade numerical search algorithm.

A listing of this program follows.

echo on, clc
% APNMOPT.M - Autopilot Nelder-Meade Optimizaton Program

% - with linear feedback controller

% - numerical optimization of autopilot controller
% fitness function using Nelder-Meade simplex
% algorithm in Matlab function FMINS.

%

% by R. Hull, 4/6/93

kg = [ -48.9113 -6.2638 1.64 ]
fit_test = - apfitfun( kg’ )
kg_opt = fmins( ’apfitfun’, kg’ )
fitness = - apfitfun( kg_opt )

pause % APNMOPT - program completed !
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A.4 APOPLOT

This MATLAB program plots the optimum fitness functions parametrically vs one
gain, while holding the other two constant. It overlays the genetically optimized
fitness function with the true optimum fitness function for comparison.

A listing of this program follows.

echo on

clc

% APOPLOT.M - Program to plot optimum fitness function
b 8 P P

; by R. Hull, 4/6/93

format compact ;

ga_opt = [ -22.3987 -4.5464 1.6614 1 % Input GA Optimum Gains
ga_fit = 1.2367 % Input GA max fitness
true_opt = [ -22.2218 -4.4455 1.4819 1 % Input True Optimum Gains
true_fit = 1.3316 % Input True max fitness
y_scale = 1.8 ; % Max y axis scale for plot

% Note - change controller spec in APFITFUN to match gains above !

pause

ki_low = -30 ;

k1_high = -10 ;
k1_delta =1 ;

k2_low = -11 ;

k2_high = -1 ;

k2_delta = .b ;
k3_low = 0.1 ;

k3_high = 4

.1
k3_delta = .2 ;
% Option to skip ki loop

char = input(’ To skip k1 plot enter y: y','s’)

if strcmp( char, 'y’ ) == 0
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k2_ga = ga_opt( 2 ); % for fixed value of k2 gain

| 'k3_ga = ga_opt( 3 ); % for fixed value of k3 gain
k2_true = true_opt( 2 ); % for fixed value of k2 gain
k3_true = true_opt( 3 ); % for fixed value of k3 gain

% Create ki history to contain values at ga optimum and true optimum
ki1_templ = k1_low : ki_delta : ki_high ;
k1_insert = ga_opt(1) ;

ki_temp2 = [ ki_templ( ki_templ < ki_insert) ki_insert ..
ki_tempi( ki1_templ > ki1_insert) ] ;

k1_insert = true_opt(1) ;
k1_hist = [ ki_temp2( k1_temp2 < ki_insert) kl_insert ..
k1_temp2( ki_temp2 > ki_insert) ] ;

% Initialize for ki loop

max_fitness 0.0 ;
ga_fit_hist = [ ] ;
true_fit_hist = [ ] ;

ki_len

length( k1_hist ) ;

for ki

L}

1 : ki_len

k1 = k1_hist( ki ) ;

kg_ga = [ k1 k2_ga k3_ga ] ;
kg_true = [ k1 k2_true k3_true ] ;

ga_fitness = - apfitfun( kg_ga’' ) ;

true_fitness - apfitfun( kg_true’ ) ;
% Save data for plots
ga_fit_hist = [ ga_fit_hist ; ga_fitness ] ;

true_fit_hist = [ true_fit_hist ; true_fitness ] ;

data_out = [ k1 ga_fitness true_fitness ] 7 output to screen
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end % for ki loop
k1
% Strike any key for plot of Fitness Function :
pause
clg

axis([ ki_low, ki_high, O, y_scale ] ) ;
plot( ki_hist, ga_fit_hist, ga_opt(1), ga_fit, 'x’, .
ki1 _hist, true_fit_hist, true_opt(1l), true_fit, ’*' ),..

title('Fitness Function vs k1')
xlabel(’k1 gain’),..
ylabel('Fitness®),..
text( ga_opt(1), ga_fit + .1, 'GA Optimum’ ),..
text( true_opt(1), true_fit + .15, ’True Optimum’ ),..
grid,pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y',’'s’)
if strcmp( char, 'y’ ) == 1
print

end

end % end if - option to skip k1 loop

% Option to skip k2 loop
char = input(' To skip k2 plot enter y: y’,’s’)

if strcmp( char, 'y’ ) == 0

kil _ga = ga_opt( 1 ); % for fixed value of k1 gain
k3_ga = ga_opt( 3 ); % for fixed value of k3 gain
ki_true = true_opt( 1 ); % for fixed value of k1 gain
k3_true = true_opt( 3 ); % for fixed value of k3 gain

% Create k2 history to contain values at ga optimum and true optimum
k2_templ = k2_low : k2_delta : k2_high ;
k2_insert = ga_opt(2) ;

k2_temp2 = [ k2_temp1( k2_templ < k2_insert) k2_insert .
k2_tempi( k2_templ > k2_insert) ] :

k2_insert = true_opt(2) ;
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k2_hist = [ k2_temp2( k2_temp2 < k2_insert) k2_insert ..
k2_temp2( k2_temp2 > k2_insert) ] ;

% Initialize for ki loop

max_fitness 0.0 ;
L1

true_fit_hist = [ ] ;

ga_fit_hist

k2_len

length( k2_hist ) ;

for ki =1 : k2_len

k2 = k2_hist( ki ) ;

kg_ga = [ ki_ga k2 k3_ga ] ;

kg_true = [ ki_true k2 k3_true ] ;
ga_fitness = - apfitfun( kg_ga’' ) ;
true_fitness = - apfitfun( kg_true’ ) ;

% Save data for plots

ga_fit_hist = [ ga_fit_hist ; ga_fitness 1 ;

true_fit_hist = [ true_fit_hist ; true_fitness ] ;

data_out = [ k2 ga_fitness true_fitness ] 7% output to screen

end % for ki loop
k2
% Strike any key for plot of Fitness Function :
pause
clg

axis([ k2_low, k2_high, 0, y_scale ] ) ;
plot( k2_hist, ga_fit_hist, ga_opt(2), ga_fit, ’'x’, ..
k2_hist, true_fit_hist, true_opt(2), true_fit, '*' ),..

title('Fitness Function vs k2'),..
xlabel(’k2 gain’),..
ylabel(’Fitness’),..
text( ga_opt(2), ga_fit + .1, 'GA Optimum’ )...
text( true_opt(2), true_fit + .15, ’True Optimum’ ),..
grid,pause
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% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,’'s’)
if strcmp( char, 'y’ ) == 1
print

end

end % end if - option to skip k2 loop

% Option to skip k3 loop
char = input(’ To skip k3 plot enter y: y',’'s’)

if strcmp( char, 'y’ ) == 0

ki_ga = ga_opt( 1 ); % for fixed value of k1 gain
k2_ga = ga_bpt( 2); % for fixed value of k2 gain
ki_true = true_opt( 1 ); % for fixed value of ki gain
k2_true = true_opt( 2 ); % for fixed value of k2 gain

9% Create k3 history to contain values at ga optimum and true optimum
y g P P
k3_templ = k3_low : k3_delta : k3 _high ;
k3_insert = ga_opt(3) ;

k3_temp2 = [ k3_tempi( k3_templ < k3_insert) k3_insert ..
k3_templ( k3_templ > k3_insert) ] ;

k3_insert = true_opt(3) ;
k3_hist = [ k3_temp2( k3_temp2 < k3_insert) k3_insert .
k3_temp2( k3_temp2 > k3_insert) ] ;

% Initialize for ki loop

max_fitness 0.0 ;
L1

true_fit_hist = [ ] ;

ga_fit_hist

k3_len

length( k3_hist ) ;

for ki

1 : k3_1len
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k3 = k3_hist( ki ) ;

kg_ga = [ ki_ga k2_ga k3 ] ;

kg_true = [ ki_true k2_true k3 ] ;

ga_fitness = - apfitfun( kg_ga’ ) ;

true_fitness = - apfitfun( kg_true’ ) ;

% Save data for plots

ga_fit_hist = [ ga_fit_hist ; ga_fitness ] ;
true_fit_hist = [ true_fit_hist ; true_fitness ] ;

data_out = [ k3 ga_fitness true_fitness ] J} output to screen

end % for ki loop
k3
% Strike any key for plot of Fitness Function :
pause
clg

axis([ k3_low, k3_high, O, y_scale ] ) ;
plot( k3_hist, ga_fit_hist, ga_opt(3), ga_fit, 'x’, .
k3_hist, true_fit_hist, true_opt(3), true_fit, '*’ ),..
title('Fitness Function vs k3’),..
xlabel(’'k3 gain’),..
ylabel(’'Fitness’),..
text( ga_opt(3), ga_fit + .1, 'GA Optimum’ ),..
text{ true_opt(3), true_fit + .16, 'True Optimum’ ),..
grid,pause

% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y','s")
if strcmp( char, 'y’ ) ==
print

end

end % end if - option to skip k3 loop

% APOPLOT - program completed !
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A.5 GATEST

This MATLAB program implements a simple genetic algorithm to demonstrate its
effectiveness on a single parameter example with a non-trivial solution.

A listing of this program follows.

echo on
clc
% GATEST - Genetic Algorithm Test Program
% - optimize special function of one parameter
)
% by R. Hull, 2/19/93
h
)
% Special Constants :
HztR = 2*pi; % Converts Hz to Radians per Second

Y  Global Variables :

global cont_plot ;

cont_plot = 1 ; % Continuous plot flag ( on monitor )
auto_plot = 1 ; % Automatic plot flag ( to printer )
combine_flag = 0 ; % Option to combine old and new populations
% and save the best individuals of both.
% Genetic Algorithm Structures
maxgen = 4 ; % number of generations per loop
popsize = 20 ; % number of individules in population
% must be even !
topsize = 2 ; % number ( even ) of top ranked individuals to
% propagate exactly in the next generation
if combine_flag == 1 % Make sure topsize is 0 if combine option
topsize = 0 ; % is used.
end ; o
newsize = 0 ; % number ( even ) of new random individuals to
% include in each new generation
numparams = 1 ; % number of parameters to optimize
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paramlength = 16 ; % number of bits per parameter
stringlength = numparams * paramlength ; % string length

% ( bits )
t_final = 5.0 ; 9% fitness function final time - sec.
pcross = .8 ; % probability of crossover
pmutation = .026 % probability of mutation

kg_scale = [ 0 6 1 7% gain parameter scales
% Units Conversions

% Initialize time values
dt = .01 ;
t = 0:dt:t_final ;

% Set screen display format to suppress excessive line feeds
format compact ;

% Initialize New Population to Random Strings

new_chrom = fix( 1.9999999 * rand( popsize, stringlength ) ) ;

% Clear generational statistics

{1

gen_avg_fitness
gen_max_fitness = [ ] ;
gen_max_baram =[1;
L1

gen_min_fitness = [ ] ;

gen_max_chrom

gen_min_param = [ ] ;
gen_min_chrom = [ ] ;
gen_kg_lower = [ ] ;
gen_kg_uﬁper =01,

gen = 1 ; % generation number
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% Evaluate Fitness of Initial Population

[new_fitness, new_param] = evalpopt( popsize, kg_scale, new_chrom );
% Evaluate Initial Population Statistics

avg_fitness = sum( new_fitness ) / popsize ;

[ max_fitness, imax ] = max( new_fitness ) ;

max_param = new_param( imax ) ;
max_chrom = new_chrom( imax ) ;
[ min_fitness, imin ] = min( new_fitness ) ;

min_param = new_param( imin ) ;

min_chrom = new_chrom( imin ) ;

% Save initial generation data :

gen_avg_fitness = [ gen_avg_fitness ; avg_fitness ] ;

gen_max_fitness [ gen_max_fitness ; max_fitness ] ;

L}
—

gen_max_param gen_max_param ; max_param ] ;

n
~—

gen_max_chrom gen_max_chrom ; max_chrom ] ;

gen_min_fitness [ gen_min_fitness ; min_fitness ] ;

~

- gen_min_param = [ gen_min_param ; min_param 1

[}
(]

gen_min_chrom gen_min_chrom ; min_chrom ] ;
% Plot of Fitness Function vs x :

L1
t = 0:.01:56.0 ;

fit_t

for i = 1 : length(t)

fit = - ( t(i) - 2.6 ) ~ 2+ 10.0 + b * sin( 4 * pi * t(i) );
fit_t = [ fit_t ; fit ] ;

end; '

plot( t, fit_t ),
title(’'Fitness Function’),..
xlabel(’x’),..
ylabel(’'Fitness’),..
grid,pause

% Prompt for hard copy plot:
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char = input(’ To make hardcopy of plot enter: y'.'s")
if strcmp( char, 'y’ ) == 1

print
end ;

% Display or plot values to screen
pause
if cont_plot ==

clg .

Y% Plot of fitness vs individual for this generation :
subplot(221) ;
ind_num = 1 : popsize ;
plot( ind_num, new_fitness ),
title([’'Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),..
ylabel('Fitness’),..
grid

% Plot of Maximum fitness vs generation :

subplot(222) ;

gen_num = 1 : gen ;

plot( gen_num, gen_max_fitness ),
title(’'- Maximum Fitness -’),..
xlabel(’Generation’),..
ylabel(’Maximum Fitness'),..
grid

% Plot parameter vs individual for this generation :
subplot(223) ;
ind_num = 1 : popsize ;
plot( ind_num, new_param ),
title([’Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),..
ylabel('Parameter: x'),..
grid

% Plot of Average Fitness vs generation :

subplot(224) ;

gen_num = 1 : gen ;

plot( gen_num, gen_avg_fitness ),
title(’'- Average Fitness -'),..
xlabel(’Generation’),..
ylabel('Average Fitness'),..
grid,pause



% if auto_plot == 1, print, shg, end ;
% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y'.'s")
if strcmp( char, 'y’ ) == 1 , print, end ;
else
generation = [ gen, avg_fitness, max_fitness, min_fitness ]
end ;
while 1 % operator control loop
% Genetic Algorithm Optimization Loop
for igen = 1 : maxgen
gen = gen + 1 ;
% Save 0ld Generatiom

old_fitness = new_fitness ;

old_chrom = new_chrom ;
old_param = new_param ;

I

n

new_chronm

sum_fitness = sum( old_fitness ) ;

% Create New Generation
% Copy top ranked individuals exactly into next generation
if topsize > 0

[ rank_fitness, rank_index ] = sort( old_fitness ) ;

top_chrom = old_chrom( rank_index( popsize - topsize + 1 ..
: popsize ), : ) ;
new_chrom = [ new_chrom ; top_chrom ] ;
end ; % ( if topsize )
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% Generate number of new random individuals in next generation

if newsize > O

random_chrom = fix( 1.9999999*rand(newsize, stringlength));
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new_chrom = [ new_chrom ; random_chrom ]

end ; % ( if newsize )
% Generate remaining number of individuals by mating parents
% of previous generation
nloops = fix( ( popsize - topsize - newsize ) / 2 ) :
for i = 1 : nloops
% - Select Parents

[ p_1, p_2 ] = select( popsize, sum_fitness, old_fitness ) ;

parent_1 = old_chrom( p_1, : ) ;

parent_2 = old_chrom( p_2, : ) ;

% - Create 2 Children, and Perform Crossover
child_1 = parent_1 ;

child_2 = parent_2 ;

% - Perform Crossover separately on each parameter

for ip = 1 : numparams
if rand <= pcross
xsite = fix( rand * ( paramlength - 1 )) + 1 ;
x1 = (ip - 1) * paramlength + 1 ;
x2 = x1 + xsite - 1 ;
child_1( x1 : x2 ) = parent_2( x1 : x2 ) ;
child_2( x1 : x2 ) = parent_1( x1 : x2 )
end ; % ( if rand )
end ; % ( for ip )

.
]

% Perform bit by bit mutation on each child
mu_string = rand( 1, stringlength ) ;

index = find( mu_string <= pmutation ) ;
child_1( index ) = ~ child_1( index ) ;
mu_string = rand( 1, stringlength ) ;

index = find( mu_string <= pmutation ) ;
child_2( index ) = ~ child_2( index ) ;
new_chrom = [ new_chrom ; child_1 ; child_2 ] ;

end ; % ( For i)




% Evaluate Fitness of New Population

[ new_fitness, new_param ] = evalpopt( popsize, kg_scale,

new_chrom )
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% Option to combine old population with new population and only
% save best individuals from both

if combine_flag ==

combine_fitness

combine_chrom

combine_param

= [ old_fitness ; new_fitness ] ;
[ old_chrom ; new_chrom ] ;

[ old_param ; new_param ] ;

combine_size = 2 * popsize ;

[ rank_fitness,

rank_index ] = sort( combine_fitness ) ;

new_index = rank_index( combine_size - popsize + 1

combine_size )

new_chrém = combine_chrom( [ new_index ], : ) ;

new_param = combine_param( [ new_index ], : ) ;

new_fitness = combine_fitness( [ new_index 1) ;

end ;

% Evaluate Population Statistics

avg_fitness = sum(

new_fitness ) / popsize ;

[ max_fitness, imax ] = max( new_fitness ) ;

max_param = new_param( imax ) ;

max_chrom

new_chrom( imax ) ;

[ min_fitness, imin ] = min( new_fitness ) ;

min_param = new_param( imin ) ;

min_chrom = new_chrom( imin ) ;

% Save generational data :

gen_avg_fitness =

[ gen_avg_fitness ; avg_fitness 1
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gen_max_fitness = [ gen_max_fitness ; max_fitness 1

L}
—

gen_max_param gen_max_param ; max_param 1 ;

gen_max_chrom = [ gen_max_chrom ; max_chrom ] ;

gen_min_fitness = [ gen_min_fitness ; min_fitness 1

gen_min_param = [ gen_min_param ; min_param ] ;

gen_min_chrom = [ gen_min_chrom ; min_chrom i

gen_kg_lower = [ gen_kg_lower ; kg_scale( 1) 1 ;

gen_kg_upper = [ gen_kg_upper ; kg_scale( 2 ) 1 ;

% Display or plot values to screen
if cont_plot == 1
clg ;

% Plot of fitness vs individual for this generation :
subplot(221) ;
ind_num = 1 : popsize ;
plot( ind_num, new_fitness ),
title([’Generation Number ', int2str(gen)] ),..
xlabel(’Individual’),.. v
ylabel('Fitness’),..
grid

% Plot of Maximum fitness vs generation :

subplot(222) ;

gen_num = 1 : gen ;

plot( gen_num, gen_max_fitness ),
title(’- Maximum Fitness -'),..
xlabel('Generation’),..
ylabel(’Maximum Fitness'),..
grid

% Plot parameter vs individual for this generation :
subplot(223) ;
ind_num = 1 : popsize ;
plot( ind_num, new_param ).,
title(['Generation Number °’, int2str(gen)] ),..
xlabel(’'Individual’),..
ylabel('Parameter: x'),..
grid

% Plot of Average Fitness vs generation :
subplot(224) ;



114

gen_num = 1 : gen ;

plot( gen_num, gen_avg_fitness ).,
title(’- Average Fitness -'),..
xlabel(’Generation’),..
ylabel('Average Fitness'),.
grid

pause ;
% if auto_plot == 1, print, shg, end ;
. % Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y','s')
if stremp( char, 'y’ ) == 1 , print, end ;

else

generation = [ gen, avg_fitness, max_fitness, min_fitness ]

end ;
end ; % ( for igen loop )
gen
gen_max_fitness( gen )
gen_max_param( gen, : )
char = input(’To continue with more generations enter : y ', 's’)
if stremp( char, 'y’ ) == 1

shg

else

% Prompt for hard copy plot:
char = input(' To make hardcopy of plot enter: y','s')

if stremp( char, 'y’ ) == , print, end ;
break ;
end ;
end ; % ( while - operator control loop )

% Output final best parameters and fitness data to screen :

gen

gen_max_fitness( gen )

gen_max_param( gen, : )

pause

subplot % return to default, i.e. full screen plots

% Plot of Average Fitness Function :
gen_num = 1 : gen ;

plot( gen_num, gen_avg_fitness ).




title(’Genetic Algorithm - Average Fitness’),..
xlabel(’Generation'),..

ylabel(’Average Fitness'),..

grid,pause

% Prompt for hard copy plot:

char = input(’ To make hardcopy of plot enter: y’,’s’)

if stremp( char, 'y’ ) ==1
print

end ;
% Plot of Maximum Fitness Function :
gen_num = 1 : gen ;
plot( gen_num, gen_max_fitness ),
title(’Genetic Algorithm - Maximum Fitness'),..
xlabel(’Generation’),..
ylabel(’Maximum Fitness'),..
grid,pause
% Prompt for hard copy plot:
char = input(' To make hardcopy of plot enter: y',’s’) ;
if stremp( char, 'y’ ) ==
print
end ;
% Plot of best parameter vs generation number :
gen_num = 1 : gen ;
plot( gen_num, gen_max_param ),
title('Genetic Algorithm - Best Parameter’),..
xlabel(’Generation’),..
ylabel(’Best Parameter: x'),..
grid,pause
% Prompt for hard copy plot:
char = input(’ To make hardcopy of plot enter: y’,’'s')
if strcemp( char, 'y’ ) == 1

print
end ;

clc

% GATEST - program completed !
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APPENDIX B

Special MATLAB Supporting Functions

Several special supporting functions were written in MATLAB and are required by
one or more of the MATLAB programs described in Appendix A. This appendix
briefly describes these supporting functions and provides a listing of their MATLAB
source files. In addition these functions and the main programs require numerous
standard MATLAB functions, as well as supporting functions from the MATLAB

Control System Toolbox [13,10].

B.1 APFITFUN

This MATLAB function evaluates the fitness function for a given set of gain pa-
rameters and design specification. It first calculates the system step response, using
STEP2S, and then determines the linear quadratic performance index using JCOST.
It then evaluates the cost function penalties imposed by peak actuator response,
settling error, and rise time constraints. The final cost function is limited and

converted to a fitness function appropriate for the genetic algorithm.

A program listing of this function follows.




FUNCTION APFITFUN - Autopilot Fitness Function
- Note: this function duplicates much
of the code in EVALPOP7
- Computes the Fitness Function based
on three input gain parameters ( kg )
- Inverts final fitness value for use

by MATLAB fmins optimization function.

by : R. Hull 4/6/93

function fitness = apfitfun( kg_vector ) ;

%
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kg = kg_vector’ ; % convert from column vector required by

% function fmins

Flight Condition Constants :

M_alpha = 64.11;

M_delta = -62.34;

M_thetadot = O;

N_alpha = .1803;

N_delta = .0738;

Tau_act = .02 ; % Actuator first order time constant
‘Velocity = 892.0; % meters/sec

% Performance Specifications

%

)

%

phi_rise = 5.0 ; % - removes rise time penalty
phi_rise = .30 ; % rise time specification

act_thresh = 1000.0 ; % - removes actuator response penalty
act_thresh = 5.0 ; % maximum actuator response specification

% penalty threshold

hoe_thresh = 100.0 ; % - removes settling error penalty
hoe_thresh = 0.0 ; % settling error penalty threshold

% specification

% Define time histories :

dtl = .01 ;
tl_final = 5.0 ;
dts = .001 ;
ts_final = 0.2 ;

ts = 0 : dts : ts_final ;

tl ts_final : dtl : t1_final ;
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9 Define Airframe + First Order Actuator State Space Realization :

A=1[- N_alpha 1.0 - N_delta
M_alpha 0 M_delta
0 0 -(1/ Tau_act ) ] ;
B = [ 0
0
(1 / Tau_act ) ] ;
¢ = [ ( N_alpha * Velocity ) O ( N_delta * Velocity )1
p=[01];

Y Determine LQR design for basic plant with first order actuator :

gmatrix = [ 10 0 ©
0.1 0
0 0.01 1;
rmatrix = .01;

% Formulate closed loop regulator with

% linear state feedback control

% to determine step response of closed loop system

% Set Cc & Dc matrices to force output equal to control for step
% response

hoec = 1.0 ; % hang off error compensation

Ac = A - B * kg ;

Bc = hoec * B * kg ;
Cc = - kg
Dc = kg ; '

% Determine the closed loop step response :
Re = [ 1
0
0 1;
% Small and large dt step responses :

[ys,yl,xs,x1] = step2s(Ac,Bc,Cc,Dc,Rec,dts,ts,dtl,t1);

¥ Evaluate the cost function separately for small and large dt
% responses and sum to get total :




r=[1 0 0] % indicates desired step response
j1 = jcost( xs, r, ys, gmatrix, rmatrix, dts );

j2 = jecost( x1, r, yl, gmatrix, rmatrix, dtl );

=31 +g2

% Evaluate the rise time
lens = length( ts ) ;

t_rise = risetime( xs(:,1), ts, .8 ) ;
if t_rise >= ts( lens )

t_rise = risetime( x1(:,1), t1, .8 )
end ;

% Determine infinity norm of actuator response
act_norm = infnorm( xs(:,3) ) ;
% Determine the Hang 0ff Error in state 1 ( settling error )

[ xrows, xcols ] = size( x1 )

hang_off_error = x1( xrows, 1 ) - r( 1) ;
if isnan( hang_off_error )

hang_off_error = 10 ;
end ;

if abs( hang_off_error ) > 10

hang_off_error = 10 ;
end ;

% Convert cost function to suitably limited fitness function
% including penality for exceeding rise time specification

if isnan( j )

j = 100 ;
end ;
if j > 100

j = 100 ;
end ;

if t_rise > phi_rise

cost_term = j + 10.0 * ( t_rise - phi_rise ) ;
else

cost_term = j ;
end ;
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% Penalty for Settling Error

if abs( hang_off_error ) > hoe_thresh
cost_term = cost_term + 10.0 * abs( hang_off_error ) ;
end ;

% Penalty for infinity norm of actuator response

if abs( act_norm ) > act_thresh
cost_term = cost_term ..
+ 20.0 * abs( act_norm - act_thresh ) ;
end ;

% Limit Cost Term
if cost_term > 100
cost_term = 100 ;
elseif cost_term < .5
cost_term = .b ;
end ;
fitnessl = exp( 2 / cost_term ) - 1 ;
fitness = - fitnessl ; % Invert for use in FMINS

% End APFITFUN
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B.2 CONV2NM2

This MATLAB function converts a 16 bit character string to an appropriately scaled

real number ranging between the specified lower and upper limits.

A program listing of this function follows.

% FUNCTION CONV2NM2
% This function converts the input string variable ( actually

% an 16 column matrix of zero's and one’s ) to a number ( num )
% with value between lower and upper.

¥ DNote that in some cases there may not be an exact zero value

% after the conversion.

function [num] = conv2nm2( string, lower, upper )

d = [ 32768
16384
8192
4096
2048
1024
512
256
128
64

32

16

8

4

2

1

1

num = lower + ( upper - lower ) * ( string * d ) / 65535 ;

% End of function CONV2NM2
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B.3 CONV2STR

This MATLAB function converts a real number to a 16 bit character string, assum-
ing it ranges between the specified lower and upper limits.

A program listing of this function follows.

% FUNCTION CONV2STR

% This function converts the input number to a 16 bit string
% ( actually a 16 column matrix of zero's and omne’s ).

% It is assummed the input number lies between the lower and
% upper limit. Usually the input number has been previously
% generated from a string and scaled by using conv2nm2.

function [string] = conv2str( num, lower, upper )

rem = 65535 * ( num - lower ) / ( upper - lower ) ;

div 32768 ;
string = zeros( 1, 16 ) ;

for i = 1:16

bit = fix( rem / div ) ;
string( i ) = bit ;

rem = rem - bit * div ;
div = div / 2 ;

end ;

% End of function CONV2STR
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B.4 EVALPOP7

This MATLAB function evaluates the genetic algorithm fitness function for a given
system configuration and design specification. It converts the parameter string
information into appropriately scaled gain values, and evaluates the fitness function
for every member of the population. It first calculates the system step response,
using STEP2S, and then determines the linear quadratic performance index using
JCOST. It then evaluates the cost function penalties imposed by peak actuator
response, settling error, and rise time constraints. The final cost function is limited
and converted to a fitness function appropriate for the genetic algorithm.

A program listing of this function follows.

% FUNCTION EVALPOP7 - Evaluate Population function M file
- assuming three parameters per string : ki,k2,k3

% - using LQR cost function

% - includes penality for rise time specification

% - use step2 function

% - include actuator model

% - include hang off error penalty

% - include actuator max response penalty

% - use smaller dt to calculate actuator response norm
L/

o

% by R. Hull, 3/1/93

function [ pop_fitness, pop_param ] = evalpop7( A, B, C, D, ts, dts,
t1l, dtl, hoe_thresh, phi_rise, act_thresh, popsize, kg_scale,
pop_chrom );

pop_param = [ ] ;

pop_fitness = [ ] ;

kg =[1.0 1.0 1.01] ;

% Set cost function weighting matrices

gmatrix = [ 1

coo
oOmO
coco

.01 1;
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rmatrix = .01;
% Population loop

for k = 1:popsize

kg(1) = conv2nm2( pop_chrom(k, 1:18), kg_scale(1,1),..
kg_scale(1,2) ) ;

kg(2) = conv2nm2( pop_chrom(k, 17:32), kg_scale(2,1),..
kg_scale(2,2) ) ;

kg(3) = conv2nm2( pop_chrom(k, 33:48), kg_scale(3,1),..

kg_scale(3,2) ) ;
pop_param = [ pop_param ; kg ] ;

% Formulate closed loop regulator with

% linear state feedback control .
% to determine step response of closed loop system
% Set Cc & Dc matrices to force output equal to control

hoec 1.0 ; % hang off error compensation
Ac = A - B * kg ;
Bc = hoec * B * kg ;
Cc = - kg ;
Dc = kg ;
% Determine the closed loop step respomnse :

Rec = [

% Small and large dt step responses :
[ys,yl,xs,x1] = step2s(Ac,Bc,Cc,Dc,Rc,dts,ts,dtl,tl);

% Evaluate the cost function separately for small and large dt
% responses and sum to get total :

r=[1 0 0] ; % indicates desired step response
j1 = jcost( xs, r, ys, gmatrix, rmatrix, dts );

j2 = jcost( x1, r, yl, gmatrix, rmatrix, dtl ):

i= 1+ §2 ;

% Evaluate the rise time
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lens = length( ts ) ;
t_rise = risetime( xs(:,1), ts, .8 ) ;
if t_rise >= ts( lens )

t_rise = risetime( x1(:,1), t1, .8 ) ;
end ;

% Determine infinity norm of actuator response
act_norm = infnorm( xs(:,3) ) ;

% Determine the Hang Off Error in state 1 ( settling error )
[ xrows, xcols ] = size( x1 ) ;
hang_off_error = x1( xrows, 1) - r( 1) ;
if isnan( hang_off_error )

hang_off_error = 10 ;
end ;
if abs( hang_off_error ) > 10

hang_off_error = 10 ;
end ;

% Convert cost function to suitably limited fitness function
% including penality for exceeding rise time specification

if isnan( j )

j = 100 ;
end ;
if j > 100

j = 100 ;
end ;

if t_rise > phi_rise
cost_term = j + 10.0 * ( t_rise - phi_rise ) ;
else
cost_term
end ;

j o

% Penalty for Settling Error

if abs( hang_off_error ) > hoe_thresh
cost_term = cost_term + 10.0 * abs( hang_off_error ) ;
end ;

% Penalty for infinity norm of actuator response
if abs( act_norm ) > act_thresh

cost_term = cost_term ..
+ 20.0 * abs( act_norm - act_thresh ) ;
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end ;
% Limit Cost Term
if cost_term > 100
cost_term = 100 ;
elseif cost_term < .b
cost_term = .b ;
end ;
fitness = exp( 2 / cost_term ) - 1 ;

pop_fitness = [ pop_fitness ; fitness ] ;

% Write data to screen if not in continuous plot mode

if cont_plot "= 1

k___fitness [ k kg fitness ]
end ;
end % for k loop

% End of EVALPOP7



B.5
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EVALPOPT

This MATLAB function evaluates the genetic algorithm fitness function for the

simple single parameter example used in program GATEST. It is only used with

GATEST.

A program listing of this function follows.

% FUNCTION EVALPOPT - Evaluate Population function M file

)
)
%
%

function [ pop_fitness, pop_param ] = ..

- assuming one parameter per string : ki
- special function for GATEST program

by R. Hull, 3/22/93

evalpopt( popsize, kg_scale, pop_chrom );

pop_param = [ ] ;
pop_fitness = [ ] ;
kg=[101;
for k = 1:popsize % Population loop
kg(1) = conv2nm2( pop_chrom(k, 1:16), kg _scale(1),..
kg_scale(2) ) ;
pop_param = [ pop_param ; kg ] ;
% Compute the special fitness function of one parameter :
x1 =kg( 1) ;
fitness = -( x1-2.56 )" 2 + 10.0 + 5#sin( 4*pi*x1 ) ;
pop_fitness = [ pop_fitness ; fitness ] ;
% Write data to screen if not in continuous plot mode
if cont;plot =1, k___fitness = [ k kg fitness ], end;

end % for k loop

% End of EVALPOPT
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B.6 INFNORM

This MATLAB function computes the peak response value, also known as the in-
finity norm, of the given input signal.

A program listing of this function follows.

% FUNCTION INFNORM
% This function computes the Infinity Norm of a
% vector function input y.

)

%  where :

% y = input response vector

% norm = output scaler equal to the infinity norm
% of y.

h

% written in MATLAB by R. Hull 2/18/93

function mnorm = infnorm( y ) ;
abs_y = abs( y ) ; % a vector

norm = max( abs_y ) ; % a scaler

% End of function infnorm
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B.7 JCOST

This MATLAB function computes the weighted linear quadratic performance index,
given the time history of the system state and control variables.

A program listing of this function follows.

% FUNCTION JCOST

% - This function computes the Linear Quadratic Requlator
% cost function based on matrices containing the

% time history of the input and states of the system

%  where :

% 1 = number of time samples

% n = number of states

% ' m = number of control inputs

% x = history of the states (lxn)

% r = desired step response of states ( 1 xn )
% u = history of the controls (1 xm)

% Q = state weighting matrix (nxmn)

% R = control weighting matrix ( m xm )

% dt = time sample interval ( constant )

% written in MATLAB by R. Hull 10/14/92

function [j] = jcost(x,r,u,Q,R,dt)

j=0;
jdotp = 0 ;
for i = 1:length(x(:,1)) ;
xerr = r - x(i,:) ;
jdot = xerr * Q * xerr.’ + u(i,:) * R * u(i,:).’ ;

j =3+ .5%dt* ( jdot + jdotp ) ;
jdotp = jdot ;

end;
% End of Function JCOST




B.8 RISETIME
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This MATLAB function computes risetime, given a response history, as measured

from 0 to 80 % of the commanded value.

A program listing of this function follows.

% FUNCTION RISETIME

% This function computes the Rise Time of a step

% response function to the value input as y_value.
% If the step response never reaches the desired
% y_value, the rtime returned will be the final

% value in the time vector.

%  where :

% y = step response vector

% t = time vector

% y_value = desired value of y at which response time
% is measured

% r_time = earliest time for which step response in y
% always exceeds y_value. Note that no

% interpolation is performed.

o,

h

% written in MATLAB by R. Hull 1/25/93

function rtime = risetime( y, t, y_vélue )
y_index = length( y ) ;

for i = 1 : length( y )
if y(i) >= y_value
y_index = i ;
break ;
end ;
end ;

len_t = length( t ) ;

if y_index < len_t
rtime = t( y_index ) ;
else
rtime = t( len_t ) ;
end ;

% End of function RISETIME



131
B.9 SELECT

This MATLAB function selects two parents from the available population pool
for mating as part of the genetic algorithm. The probability of selection is based
on a uniformly distributed random function, but is weighted according to each
individual’s fitness relative to the total population fitness. It ensures that the two
parents selected are different individuals.

A program listing of this function follows.

% FUNCTION SELECT - Select Parents for Genmetic Algorithm

% by R. Hull 1/12/93

)

% Note : this selection procedure insures that

% parent_1 and parent_2 are different individuals.

function [ parent_1, parent_2 ] = select( popsize, sum_fitness,
pop_fitness ) ;

% Determine random roulette wheel pointer
pointer_sum = rand * sum_fitness ;
part_sum = O ;
for parent_1 = 1 : popsize

part_sum = part_sum + pop_fitness( parent_1 ) ;

if part_sum >= pointer_sum, break, end ; % break loop
end ; % ( for parent_1 loop )
% Remove parent_1 from choices and repeat to find parent_2
sum_fitness = sum_fitness - pop_fitness( parent_1 ) ;
pop_fitness( parent_1 ) =0 ;
% Determine second random roulette wheel pointer

pointer_sum = rand * sum_fitness ;

part_sum = O ;




for parent_2 = 1 : popsize

part_sum = part_sum + pop_fitness( parent_2 )

if part_sum >= pointer_sum, break, end ;
end ; % ( for parent_2 loop )

% End of function SELECT

% break loop
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B.10 SELXSITE

This MATLAB function selects the crossover site for the crossover function of the
genetic algorithm. It implements an experimental crossover function, in which the
random distribution of the site selection is weighted in favor of high order bits in
early generations, gradually shifting to favor low order bits in later generations.

A program listing of this function follows.

% FUNCTION SELXSITE - Select Genetic Algorithm Crossover Site

% by R. Hull 2/15/93

]

A

% This function selects a crossover site for the

% Genetic Algorithm that is stochastically weighted

% depending upon generation.

% It uses a gaussian distribution that is "folded over"
% at the ends of the parameter bit length.

function xsite = selxsite( paramlength, generation ) ;
% Switch to Normal Distribution
rand(’'normal’) ;
sigma = paramlength / 3 ;
mean = generation ;
if mean < 1
mean = 1 ;
elseif mean > paramlength
mean = paramlength ;
end ;
gauss_max = paramlength - 1 ;
% Generate Gaussian number and fold over negative tail
gauss_num = abs( rand * sigma + mean ) ;
% Fold over positive side tail
if gauss_num > ( 2 * gauss_max )

gauss_num = 2 * gauss_max ,
end ;
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if gauss_num > gauss_max
gauss_num = 2 % gauss_max - gauss_num ;
end ;
% Convert to integer crossover site between 1 and paramlength
xsite = fix( gauss_num ) + 1 ;
% Switch Back to Uniform Distribution

rand("uniform’) ;

% End of function SELXSITE
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B.11 STEP2S

This MATLAB function computes the step response to a LTIC system using two
different integration time intervals. It first uses a small dt (dts) to provide accurate
integration during the initial period of high dynamics. It then switches to a larger
dt (dtl) to compute the steady state step response during a period of lower dynamic
rates. This enables an accurate response to be generated, yet conserves computation

time and resources.

A program listing of this function follows.

% Function STEP2S

% ‘Computes the step response of continuous-time linear

% systems, using split dt’s.

%

% This function calculates the response of the system:

9,

%

% x = Ax + Bu

% y = Cx + Du

)

% to a step input vector R ( m x 1 ), using dts over

% the time history in ts, and dtl over the time history

% in t1

)

% ys is the response over time history ts

% yl is the response over time history tl

% xs is the state history over time history ts

% x1 is the state history over time history tl

)

% This allows an accurate step response to be determined over
% the initial period of high actuator dynamics using a small
% dt (dts), then a steady state response to be generated using
% a large dt (dtl), without using too much computer time.

% The final states of the small dt response become the initial
% states for the large dt response.

9,

b

% by R. Hull 3/1/93

function {ys,yl,xs,x1l] = step2s(a,b,c,d,r,dts,ts,dtl,tl) ;

% Convert Continuous System to Discrete Time Systems :

[aas,bbs] c2d(a,b,dts);

[aal,bbl] c2d(a,b,dtl);
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% Build Small Step Input Matrix from input vector
lens = length(ts);

u = ones( lens, 1 ) *r.’ ;
% Compute linear time invariant state response :
xs8 = 1ltitr(aas,bbs,u);
% Compute output vector :

ys = xs *x c."+u *d.";
% Build Large Step Input Matrix from input vector
lenl = length(tl);

u = ones( lenl, 1) *r.’ ;
% Initialize states to final values from small dt response :
xsf = xs( lens, : ) ;
% Compute liﬁear time invariant state response :
x1 = 1ltitr(aal,bbl,u,xsf);
% Compute output vector :

yl =x1 % c.’+u * 4.’°;

% End of function STEP2S




